Hackster is hosting Hackster Holidays, Ep. 7: Livestream & Giveaway Drawing. Watch previous episodes or stream live on Friday!Stream Hackster Holidays, Ep. 7 on Friday!
Peter MaSarah HanShin Ae Hong
Published © GPL3+

Ultra96 Skin Cancer AI

Using Ultra96 and NCS to detect and classify skin cancer.

ExpertFull instructions provided2 days8,185

Things used in this project

Hardware components

Ultra96-V1
Avnet Ultra96-V1
×1

Story

Read more

Custom parts and enclosures

Skin Cancer AI

Skin Cancer AI model

Schematics

Skin Cancer AI Flow

Flow of how Skin Cancer AI was built

Code

Live classification

Python
Live classification code
#!/usr/bin/python3

# ****************************************************************************
# Copyright(c) 2017 Intel Corporation. 
# License: MIT See LICENSE file in root directory.
# ****************************************************************************

# Perform inference on a LIVE camera feed using DNNs on 
# Intel® Movidius™ Neural Compute Stick (NCS)

import os
import cv2
import sys
import numpy
import ntpath
import argparse

import mvnc.mvncapi as mvnc

# Variable to store commandline arguments
ARGS                 = None

# OpenCV object for video capture
camera               = None

# ---- Step 1: Open the enumerated device and get a handle to it -------------

def open_ncs_device():

    # Look for enumerated NCS device(s); quit program if none found.
    devices = mvnc.EnumerateDevices()
    if len( devices ) == 0:
        print( "No devices found" )
        quit()

    # Get a handle to the first enumerated device and open it
    device = mvnc.Device( devices[0] )
    device.OpenDevice()

    return device

# ---- Step 2: Load a graph file onto the NCS device -------------------------

def load_graph( device ):

    # Read the graph file into a buffer
    with open( ARGS.graph, mode='rb' ) as f:
        blob = f.read()

    # Load the graph buffer into the NCS
    graph = device.AllocateGraph( blob )

    return graph

# ---- Step 3: Pre-process the images ----------------------------------------

def pre_process_image( frame ):

    # Resize image [Image size is defined by choosen network, during training]
    img = cv2.resize( frame, tuple( ARGS.dim ) )

    # Extract/crop a section of the frame and resize it
    height, width, channels = frame.shape
    x1 = int( width / 3 )
    y1 = int( height / 4 )
    x2 = int( width * 2 / 3 )
    y2 = int( height * 3 / 4 )

    cv2.rectangle( frame, ( x1, y1 ) , ( x2, y2 ), ( 0, 255, 0 ), 2 )
    img = frame[ y1 : y2, x1 : x2 ]

    # Resize image [Image size if defined by choosen network, during training]
    img = cv2.resize( img, tuple( ARGS.dim ) )

    # Convert BGR to RGB [OpenCV reads image in BGR, some networks may need RGB]
    if( ARGS.colormode == "rgb" ):
        img = img[:, :, ::-1]

    # Mean subtraction & scaling [A common technique used to center the data]
    img = img.astype( numpy.float16 )
    img = ( img - numpy.float16( ARGS.mean ) ) * ARGS.scale

    return img

# ---- Step 4: Read & print inference results from the NCS -------------------

def infer_image( graph, img, frame ):

    # Load the image as a half-precision floating point array
    graph.LoadTensor( img, 'user object' )

    # Get the results from NCS
    output, userobj = graph.GetResult()

    # Find the index of highest confidence 
    top_prediction = output.argmax()

    # Get execution time
    inference_time = graph.GetGraphOption( mvnc.GraphOption.TIME_TAKEN )

    print(  "I am %3.1f%%" % (100.0 * output[top_prediction] ) + " confidant"
            + " it is " + labels[top_prediction]
            + " ( %.2f ms )" % ( numpy.sum( inference_time ) ) )
    
    displaystring = str(100.0 * output[top_prediction]) + " " + labels[top_prediction]
    # If a display is available, show the image on which inference was performed
    if 'DISPLAY' in os.environ:
        textsize = cv2.getTextSize(displaystring, cv2.FONT_HERSHEY_SIMPLEX, 1, 2)[0]
        textX = (frame.shape[1] - textsize[0])/2
        cv2.putText(frame, displaystring, (int(textX),450), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,0,0),2)
        cv2.imshow( 'Skin Cancer AI', frame )

# ---- Step 5: Unload the graph and close the device -------------------------

def close_ncs_device( device, graph ):
    graph.DeallocateGraph()
    device.CloseDevice()
    camera.release()
    cv2.destroyAllWindows()

# ---- Main function (entry point for this script ) --------------------------

def main():

    device = open_ncs_device()
    graph = load_graph( device )

    # Main loop: Capture live stream & send frames to NCS
    while( True ):
        ret, frame = camera.read()
        img = pre_process_image( frame )
        infer_image( graph, img, frame )

        # Display the frame for 5ms, and close the window so that the next
        # frame can be displayed. Close the window if 'q' or 'Q' is pressed.
        if( cv2.waitKey( 5 ) & 0xFF == ord( 'q' ) ):
            break

    close_ncs_device( device, graph )

# ---- Define 'main' function as the entry point for this script -------------

if __name__ == '__main__':

    parser = argparse.ArgumentParser(
                         description="Image classifier using \
                         Intel® Movidius™ Neural Compute Stick." )

    parser.add_argument( '-g', '--graph', type=str,
                         default='CancerNet/graph',
                         help="Absolute path to the neural network graph file." )

    parser.add_argument( '-v', '--video', type=int,
                         default=0,
                         help="Index of your computer's V4L2 video device. \
                               ex. 0 for /dev/video0" )

    parser.add_argument( '-l', '--labels', type=str,
                         default='./CancerNet/categories.txt',
                         help="Absolute path to labels file." )

    parser.add_argument( '-M', '--mean', type=float,
                         nargs='+',
                         default=[78.42633776, 87.76891437, 114.89584775],
                         help="',' delimited floating point values for image mean." )

    parser.add_argument( '-S', '--scale', type=float,
                         default=1,
                         help="Absolute path to labels file." )

    parser.add_argument( '-D', '--dim', type=int,
                         nargs='+',
                         default=[227, 227],
                         help="Image dimensions. ex. -D 224 224" )

    parser.add_argument( '-c', '--colormode', type=str,
                         default="rgb",
                         help="RGB vs BGR color sequence. This is network dependent." )

    ARGS = parser.parse_args()

    # Create a VideoCapture object
    camera = cv2.VideoCapture( ARGS.video )

    # Set camera resolution
    camera.set( cv2.CAP_PROP_FRAME_WIDTH, 620 )
    camera.set( cv2.CAP_PROP_FRAME_HEIGHT, 480 )

    # Load the labels file
    labels =[ line.rstrip('\n') for line in
              open( ARGS.labels ) if line != 'classes\n']

    main()

# ==== End of file ===========================================================

NCS SDK

NCS SDK for arm64

Credits

Peter Ma
49 projects • 394 followers
Prototype Hacker, Hackathon Goer, World Traveler, Ecological balancer, integrationist, technologist, futurist.
Sarah Han
13 projects • 79 followers
Software Engineer, Design, 3D
Shin Ae Hong
5 projects • 35 followers
Global Startup Incubation Specialist @Innoway

Comments