Hackster is hosting Hackster Holidays, Ep. 6: Livestream & Giveaway Drawing. Watch previous episodes or stream live on Monday!Stream Hackster Holidays, Ep. 6 on Monday!
aztechMr.Fred
Created June 16, 2023

A Device for Sensing and Alerting Students to Poor Ergonomic

An ergonomics monitoring gadget for students that uses computer vision to track posture, alerting and guiding them towards healthier habits.

25
A Device for Sensing and Alerting Students to Poor Ergonomic

Things used in this project

Story

Read more

Schematics

Schematics

Code

Arduino Code for FireBeettle2

Arduino
#include <Arduino.h>
#include <WiFi.h>
#include "soc/soc.h"
#include "soc/rtc_cntl_reg.h"
#include "esp_camera.h"
#include "esp32cam.h"
#include "esp32cam/apps/PersonDetector.h"
#include <PubSubClient.h>

const char* ssid = "********";
const char* password = "********";  // Replace with your Wi-Fi password

String serverName = "";   // REPLACE WITH YOUR IP ADDRESS or domain name
String serverPath = "/uploadfile/";     // The default serverPath should be upload.php

const int serverPort = 8000;
const char* mqtt_server = ""; // Replace with your MQTT server IP address

WiFiClient client;
PubSubClient mqttClient(client);

// CAMERA_MODEL_AI_THINKER
#define PWDN_GPIO_NUM     32
#define RESET_GPIO_NUM    -1
#define XCLK_GPIO_NUM      0
#define SIOD_GPIO_NUM     26
#define SIOC_GPIO_NUM     27

#define Y9_GPIO_NUM       35
#define Y8_GPIO_NUM       34
#define Y7_GPIO_NUM       39
#define Y6_GPIO_NUM       36
#define Y5_GPIO_NUM       21
#define Y4_GPIO_NUM       19
#define Y3_GPIO_NUM       18
#define Y2_GPIO_NUM        5
#define VSYNC_GPIO_NUM    25
#define HREF_GPIO_NUM     23
#define PCLK_GPIO_NUM     22

const int timerInterval = 30000;    // time between each HTTP POST image
unsigned long previousMillis = 0;   // last time image was sent

void setup() {
  WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 0); 
  Serial.begin(115200);

  WiFi.mode(WIFI_STA);
  Serial.println();
  Serial.print("Connecting to ");
  Serial.println(ssid);
  WiFi.begin(ssid, password);  
  while (WiFi.status() != WL_CONNECTED) {
    Serial.print(".");
    delay(500);
  }
  Serial.println();
  Serial.print("ESP32-CAM IP Address: ");
  Serial.println(WiFi.localIP());

  camera_config_t config;
  config.ledc_channel = LEDC_CHANNEL_0;
  config.ledc_timer = LEDC_TIMER_0;
  config.pin_d0 = Y2_GPIO_NUM;
  config.pin_d1 = Y3_GPIO_NUM;
  config.pin_d2 = Y4_GPIO_NUM;
  config.pin_d3 = Y5_GPIO_NUM;
  config.pin_d4 = Y6_GPIO_NUM;
  config.pin_d5 = Y7_GPIO_NUM;
  config.pin_d6 = Y8_GPIO_NUM;
  config.pin_d7 = Y9_GPIO_NUM;
  config.pin_xclk = XCLK_GPIO_NUM;
  config.pin_pclk = PCLK_GPIO_NUM;
  config.pin_vsync = VSYNC_GPIO_NUM;
  config.pin_href = HREF_GPIO_NUM;
  config.pin_sscb_sda = SIOD_GPIO_NUM;
  config.pin_sscb_scl = SIOC_GPIO_NUM;
  config.pin_pwdn = PWDN_GPIO_NUM;
  config.pin_reset = RESET_GPIO_NUM;
  config.xclk_freq_hz = 20000000;
  config.pixel_format = PIXFORMAT_JPEG;
  if(psramFound()){
    config.frame_size = FRAMESIZE_UXGA;
    config.jpeg_quality = 10;  //0-63 lower number means higher quality
    config.fb_count = 2;
  } else {
    config.frame_size = FRAMESIZE_CIF;
    config.jpeg_quality = 12;  //0-63 lower number means higher quality
    config.fb_count = 1;
  }
  
  esp_err_t err = esp_camera_init(&config);
  if (err != ESP_OK) {
    Serial.printf("Camera init failed with error 0x%x", err);
    delay(1000);
    ESP.restart();
  }
}

void loop() {
  unsigned long currentMillis = millis();
  if (currentMillis - previousMillis >= timerInterval) {
    previousMillis = currentMillis;
    captureAndUpload();
  }
}

void captureAndUpload() {
  camera_fb_t* fb = NULL;
  
  fb = esp_camera_fb_get();
  
  if (!fb) {
    Serial.println("Camera capture failed");
    return;
  }

  WiFiClient client;
  
  if (client.connect(serverName.c_str(), serverPort)) {
    String head = "--BoundaryString\r\nContent-Disposition: form-data; name=\"file\"; filename=\"esp32-cam.jpg\"\r\nContent-Type: image/jpeg\r\n\r\n";
    String tail = "\r\n--BoundaryString--\r\n";

    uint16_t imageLen = fb->len;
    uint16_t extraLen = head.length() + tail.length();
    uint16_t totalLen = imageLen + extraLen;

    client.println("POST " + serverPath + " HTTP/1.1");
    client.println("Host: " + serverName);
    client.println("Content-Length: " + String(totalLen));
    client.println("Content-Type: multipart/form-data; boundary=BoundaryString");
    client.println();
    client.print(head);

    uint8_t *fbBuf = fb->buf;
    size_t fbLen = fb->len;
    for (size_t n = 0; n < fbLen; n = n + 1024) {
      if (n + 1024 < fbLen) {
        client.write(fbBuf, 1024);
        fbBuf += 1024;
      } else if (fbLen % 1024 > 0) {
        size_t remainder = fbLen % 1024;
        client.write(fbBuf, remainder);
      }
    }

    client.print(tail);
    
    esp_camera_fb_return(fb);
    
    int timoutTimer = 10000;
    long startTimer = millis();
    boolean state = false;
    
    while ((startTimer + timoutTimer) > millis()) {
      Serial.print(".");
      delay(100);      
      while (client.available()) {
        char c = client.read();
        Serial.print(c);  // print all incoming data
        if (c == '\n') {
          if (getAll.length()==0) { state=true; }
          getAll = "";
        }
        else if (c != '\r') { getAll += String(c); }
        if (state==true) { getBody += String(c); }
        startTimer = millis();
      }
      if (getBody.length()>0) { break; }
    }
    Serial.println();
    Serial.println(getBody);
    client.stop();
  }
  else {
    getBody = "Connection to " + serverName +  " failed.";
    Serial.println(getBody);
  }
}

Back End Server

Python
from fastapi import FastAPI, UploadFile, Request, File
from fastapi_mqtt import FastMQTT, MQTTConfig
from tensorflow_hub import load
import tensorflow as tf
import numpy as np
from PIL import Image
import io
import os
import sys

# Add the path to the pose estimation example
pose_sample_rpi_path = os.path.join(os.getcwd(), '../examples/lite/examples/pose_estimation/raspberry_pi')
sys.path.append(pose_sample_rpi_path)

# Import the necessary modules
import utils
from data import BodyPart
from ml import Movenet

app = FastAPI()

mqtt_config = MQTTConfig()

fast_mqtt = FastMQTT(
    config=mqtt_config
)

@app.on_event("startup")
async def startup_event():
    await fast_mqtt.connection()

# Load the MoveNet model
movenet = Movenet('movenet_thunder_fp16.tflite')

# Load the TFLite classifier model
interpreter = tf.lite.Interpreter(model_path="pose_classifier.tflite")
interpreter.allocate_tensors()

# Define function to run pose estimation using MoveNet Thunder.
# You'll apply MoveNet's cropping algorithm and run inference multiple times on
# the input image to improve pose estimation accuracy.
def detect(input_tensor, inference_count=3):
  # Detect pose using the full input image
  movenet.detect(input_tensor.numpy(), reset_crop_region=True)

  # Repeatedly using previous detection result to identify the region of
  # interest and only croping that region to improve detection accuracy
  for _ in range(inference_count - 1):
    person = movenet.detect(input_tensor.numpy(), 
                            reset_crop_region=False)

  return person

def predict_pose(interpreter, keypoints):
    """Predicts the pose class for the given keypoints using the TFLite model."""
    input_index = interpreter.get_input_details()[0]["index"]
    output_index = interpreter.get_output_details()[0]["index"]

    # Pre-processing: add batch dimension and convert to float32 to match with
    # the model's input data format.
    keypoints = np.expand_dims(keypoints, axis=0).astype('float32')
    interpreter.set_tensor(input_index, keypoints)

    # Run inference.
    interpreter.invoke()

    # Post-processing: remove batch dimension and find the class with highest
    # probability.
    output = interpreter.tensor(output_index)
    predicted_label = np.argmax(output()[0])

    return predicted_label

@app.post("/uploadfile/")
async def upload_file(request: Request, file: UploadFile = File(...)):
    # Load the image
    image = Image.open(io.BytesIO(await file.read()))
    image = tf.convert_to_tensor(np.array(image))
    image = tf.image.resize(image, [192, 192])  # Resize to model's expected input size

    # Run the pose estimation
    person = detect(image)

    # Get landmarks and scale it to the same size as the input image
    pose_landmarks = np.array(
                  [[keypoint.coordinate.x, keypoint.coordinate.y, keypoint.score]
                    for keypoint in person.keypoints],
                  dtype=np.float32)

    # Write the landmark coordinates to its per-class CSV file
    coordinates = pose_landmarks.flatten().astype(np.str).tolist()

    # Predict the pose class for the keypoints
    predicted_label = predict_pose(interpreter, coordinates)

    # Read the labels from the text file
    with open('pose_labels.txt', 'r') as f:
        labels = [line.strip() for line in f]
    
    # Get the client's IP address
    client_host = request.client.host

    # After processing the image and getting the result, publish it to the MQTT topic
    topic = "esp32-cam/" + client_host  # Use the IP address of the ESP32-CAM as the topic
    message = {"predicted_label": labels[predicted_label]}
    fast_mqtt.publish(topic, message)

    # Return the predicted label
    return {"predicted_label": labels[predicted_label]}

Credits

aztech

aztech

2 projects • 0 followers
Mr.Fred

Mr.Fred

0 projects • 0 followers
Thanks to .

Comments