Club Asimov
Published

Acoustic Levitation

We built another levitation machine with 72 ultrasonic transducers. We want to show that robotics and science can be really cool!

IntermediateFull instructions provided7 hours1,165
Acoustic Levitation

Things used in this project

Hardware components

40khz transducers
×72
Arduino Nano
×1
Shield L298N
×1
Power Switch
×1
Dc adaptor 9v
×1
Jumper wires
×1
3D-printed TinyLev
×1

Story

Read more

Schematics

Acoustic levitation

Code

Acoustic levitation

Arduino
#include <avr/sleep.h>
#include <avr/power.h>

#define N_PORTS 1
#define N_DIVS 24

#define WAIT_LOT(a) __asm__ __volatile__ ("nop"); __asm__ __volatile__ ("nop"); __asm__ __volatile__ ("nop");  __asm__ __volatile__ ("nop"); __asm__ __volatile__ ("nop");__asm__ __volatile__ ("nop"); __asm__ __volatile__ ("nop");__asm__ __volatile__ ("nop"); __asm__ __volatile__ ("nop");  __asm__ __volatile__ ("nop"); __asm__ __volatile__ ("nop");__asm__ __volatile__ ("nop");  __asm__ __volatile__ ("nop");  __asm__ __volatile__ ("nop")
#define WAIT_MID(a) __asm__ __volatile__ ("nop"); __asm__ __volatile__ ("nop"); __asm__ __volatile__ ("nop");  __asm__ __volatile__ ("nop"); __asm__ __volatile__ ("nop");__asm__ __volatile__ ("nop"); __asm__ __volatile__ ("nop");__asm__ __volatile__ ("nop"); __asm__ __volatile__ ("nop"); __asm__ __volatile__ ("nop"); __asm__ __volatile__ ("nop"); __asm__ __volatile__ ("nop"); __asm__ __volatile__ ("nop")
#define WAIT_LIT(a) __asm__ __volatile__ ("nop"); __asm__ __volatile__ ("nop"); __asm__ __volatile__ ("nop");  __asm__ __volatile__ ("nop"); __asm__ __volatile__ ("nop");  __asm__ __volatile__ ("nop");  __asm__ __volatile__ ("nop");  __asm__ __volatile__ ("nop");  __asm__ __volatile__ ("nop")


#define OUTPUT_WAVE(pointer, d)  PORTC = pointer[d*N_PORTS + 0]

#define N_BUTTONS 6
//half a second
#define STEP_SIZE 1
#define BUTTON_SENS 2500 
#define N_FRAMES 24

static byte frame = 0;
static byte animation[N_FRAMES][N_DIVS] = 
{{0x5,0x5,0x5,0x5,0x5,0x5,0x5,0x5,0x5,0x5,0x5,0x5,0xa,0xa,0xa,0xa,0xa,0xa,0xa,0xa,0xa,0xa,0xa,0xa},
{0x9,0x5,0x5,0x5,0x5,0x5,0x5,0x5,0x5,0x5,0x5,0x5,0x6,0xa,0xa,0xa,0xa,0xa,0xa,0xa,0xa,0xa,0xa,0xa},
{0x9,0x9,0x5,0x5,0x5,0x5,0x5,0x5,0x5,0x5,0x5,0x5,0x6,0x6,0xa,0xa,0xa,0xa,0xa,0xa,0xa,0xa,0xa,0xa},
{0x9,0x9,0x9,0x5,0x5,0x5,0x5,0x5,0x5,0x5,0x5,0x5,0x6,0x6,0x6,0xa,0xa,0xa,0xa,0xa,0xa,0xa,0xa,0xa},
{0x9,0x9,0x9,0x9,0x5,0x5,0x5,0x5,0x5,0x5,0x5,0x5,0x6,0x6,0x6,0x6,0xa,0xa,0xa,0xa,0xa,0xa,0xa,0xa},
{0x9,0x9,0x9,0x9,0x9,0x5,0x5,0x5,0x5,0x5,0x5,0x5,0x6,0x6,0x6,0x6,0x6,0xa,0xa,0xa,0xa,0xa,0xa,0xa},
{0x9,0x9,0x9,0x9,0x9,0x9,0x5,0x5,0x5,0x5,0x5,0x5,0x6,0x6,0x6,0x6,0x6,0x6,0xa,0xa,0xa,0xa,0xa,0xa},
{0x9,0x9,0x9,0x9,0x9,0x9,0x9,0x5,0x5,0x5,0x5,0x5,0x6,0x6,0x6,0x6,0x6,0x6,0x6,0xa,0xa,0xa,0xa,0xa},
{0x9,0x9,0x9,0x9,0x9,0x9,0x9,0x9,0x5,0x5,0x5,0x5,0x6,0x6,0x6,0x6,0x6,0x6,0x6,0x6,0xa,0xa,0xa,0xa},
{0x9,0x9,0x9,0x9,0x9,0x9,0x9,0x9,0x9,0x5,0x5,0x5,0x6,0x6,0x6,0x6,0x6,0x6,0x6,0x6,0x6,0xa,0xa,0xa},
{0x9,0x9,0x9,0x9,0x9,0x9,0x9,0x9,0x9,0x9,0x5,0x5,0x6,0x6,0x6,0x6,0x6,0x6,0x6,0x6,0x6,0x6,0xa,0xa},
{0x9,0x9,0x9,0x9,0x9,0x9,0x9,0x9,0x9,0x9,0x9,0x5,0x6,0x6,0x6,0x6,0x6,0x6,0x6,0x6,0x6,0x6,0x6,0xa},
{0x9,0x9,0x9,0x9,0x9,0x9,0x9,0x9,0x9,0x9,0x9,0x9,0x6,0x6,0x6,0x6,0x6,0x6,0x6,0x6,0x6,0x6,0x6,0x6},
{0x5,0x9,0x9,0x9,0x9,0x9,0x9,0x9,0x9,0x9,0x9,0x9,0xa,0x6,0x6,0x6,0x6,0x6,0x6,0x6,0x6,0x6,0x6,0x6},
{0x5,0x5,0x9,0x9,0x9,0x9,0x9,0x9,0x9,0x9,0x9,0x9,0xa,0xa,0x6,0x6,0x6,0x6,0x6,0x6,0x6,0x6,0x6,0x6},
{0x5,0x5,0x5,0x9,0x9,0x9,0x9,0x9,0x9,0x9,0x9,0x9,0xa,0xa,0xa,0x6,0x6,0x6,0x6,0x6,0x6,0x6,0x6,0x6},
{0x5,0x5,0x5,0x5,0x9,0x9,0x9,0x9,0x9,0x9,0x9,0x9,0xa,0xa,0xa,0xa,0x6,0x6,0x6,0x6,0x6,0x6,0x6,0x6},
{0x5,0x5,0x5,0x5,0x5,0x9,0x9,0x9,0x9,0x9,0x9,0x9,0xa,0xa,0xa,0xa,0xa,0x6,0x6,0x6,0x6,0x6,0x6,0x6},
{0x5,0x5,0x5,0x5,0x5,0x5,0x9,0x9,0x9,0x9,0x9,0x9,0xa,0xa,0xa,0xa,0xa,0xa,0x6,0x6,0x6,0x6,0x6,0x6},
{0x5,0x5,0x5,0x5,0x5,0x5,0x5,0x9,0x9,0x9,0x9,0x9,0xa,0xa,0xa,0xa,0xa,0xa,0xa,0x6,0x6,0x6,0x6,0x6},
{0x5,0x5,0x5,0x5,0x5,0x5,0x5,0x5,0x9,0x9,0x9,0x9,0xa,0xa,0xa,0xa,0xa,0xa,0xa,0xa,0x6,0x6,0x6,0x6},
{0x5,0x5,0x5,0x5,0x5,0x5,0x5,0x5,0x5,0x9,0x9,0x9,0xa,0xa,0xa,0xa,0xa,0xa,0xa,0xa,0xa,0x6,0x6,0x6},
{0x5,0x5,0x5,0x5,0x5,0x5,0x5,0x5,0x5,0x5,0x9,0x9,0xa,0xa,0xa,0xa,0xa,0xa,0xa,0xa,0xa,0xa,0x6,0x6},
{0x5,0x5,0x5,0x5,0x5,0x5,0x5,0x5,0x5,0x5,0x5,0x9,0xa,0xa,0xa,0xa,0xa,0xa,0xa,0xa,0xa,0xa,0xa,0x6}};


void setup()
{

/*
 for (int i = 0; i < (N_PORTS*N_DIVS); ++i){
    animation[frame][i] =  0;
  }

  for (int i = 0; i < (N_PORTS*N_DIVS/2); ++i){
     animation[frame][i] = 0b11111111;
  }
  
  for(int i = 0; i < N_DIVS; ++i){
    if (i % 2 == 0){
      animation[frame][i * N_PORTS] |= 0b00000001;
    }else{
      animation[frame][i * N_PORTS] &= 0b11111110;
    }
  }
*/
   DDRC = 0b00001111; //A0 to A3 are the signal outputs
   PORTC = 0b00000000; 
   
   pinMode(10, OUTPUT); //pin 10 (B2) will generate a 40kHz signal to sync 
   pinMode(11, INPUT_PULLUP); //pin 11 (B3) is the sync in
   //please connect pin 10 to pin 11

   for (int i = 2; i < 8; ++i){ //pin 2 to 7 (D2 to D7) are inputs for the buttons
    pinMode(i, INPUT_PULLUP); 
   }

  // generate a sync signal of 40khz in pin 10
  noInterrupts();           // disable all interrupts
  TCCR1A = bit (WGM10) | bit (WGM11) | bit (COM1B1); // fast PWM, clear OC1B on compare
  TCCR1B = bit (WGM12) | bit (WGM13) | bit (CS10);   // fast PWM, no prescaler
  OCR1A =  (F_CPU / 40000L) - 1;
  OCR1B = (F_CPU / 40000L) / 2;
  interrupts();             // enable all interrupts

  // disable everything that we do not need 
  ADCSRA = 0;  // ADC
  power_adc_disable ();
  power_spi_disable();
  power_twi_disable();
  power_timer0_disable();
  //power_usart0_disable();
  Serial.begin(115200);

 byte* emittingPointer = &animation[frame][0];
 byte buttonsPort = 0;

 bool anyButtonPressed;
 bool buttonPressed[N_BUTTONS];
 short buttonCounter = 0;

  LOOP:
    while(PINB & 0b00001000); //wait for pin 11 (B3) to go low 
    
    OUTPUT_WAVE(emittingPointer, 0); buttonsPort = PIND; WAIT_LIT();
    OUTPUT_WAVE(emittingPointer, 1); anyButtonPressed = (buttonsPort & 0b11111100) != 0b11111100; WAIT_MID();
    OUTPUT_WAVE(emittingPointer, 2); buttonPressed[0] = buttonsPort & 0b00000100; WAIT_MID();
    OUTPUT_WAVE(emittingPointer, 3); buttonPressed[1] = buttonsPort & 0b00001000; WAIT_MID();
    OUTPUT_WAVE(emittingPointer, 4); buttonPressed[2] = buttonsPort & 0b00010000; WAIT_MID();
    OUTPUT_WAVE(emittingPointer, 5); buttonPressed[3] = buttonsPort & 0b00100000; WAIT_MID();
    OUTPUT_WAVE(emittingPointer, 6); buttonPressed[4] = buttonsPort & 0b01000000; WAIT_MID();
    OUTPUT_WAVE(emittingPointer, 7); buttonPressed[5] = buttonsPort & 0b10000000; WAIT_MID();
    OUTPUT_WAVE(emittingPointer, 8); WAIT_LOT();
    OUTPUT_WAVE(emittingPointer, 9); WAIT_LOT();
    OUTPUT_WAVE(emittingPointer, 10); WAIT_LOT();
    OUTPUT_WAVE(emittingPointer, 11); WAIT_LOT();
    OUTPUT_WAVE(emittingPointer, 12); WAIT_LOT();
    OUTPUT_WAVE(emittingPointer, 13); WAIT_LOT();
    OUTPUT_WAVE(emittingPointer, 14); WAIT_LOT();
    OUTPUT_WAVE(emittingPointer, 15); WAIT_LOT();
    OUTPUT_WAVE(emittingPointer, 16); WAIT_LOT();
    OUTPUT_WAVE(emittingPointer, 17); WAIT_LOT();
    OUTPUT_WAVE(emittingPointer, 18); WAIT_LOT();
    OUTPUT_WAVE(emittingPointer, 19); WAIT_LOT();
    OUTPUT_WAVE(emittingPointer, 20); WAIT_LOT();
    OUTPUT_WAVE(emittingPointer, 21); WAIT_LOT();
    OUTPUT_WAVE(emittingPointer, 22); WAIT_LOT();
    OUTPUT_WAVE(emittingPointer, 23); 


    if( anyButtonPressed ){
       ++buttonCounter;
       if (buttonCounter > BUTTON_SENS){
        buttonCounter = 0;
        
        if (! buttonPressed[0] ) {
          if( frame < STEP_SIZE ) { 
            frame = N_FRAMES-1;
         }else{
            frame-=STEP_SIZE; 
         }
        }
        else if (! buttonPressed[1] ) { 
          if ( frame >= N_FRAMES-STEP_SIZE ) { 
            frame = 0;
          }else {
            frame+=STEP_SIZE; 
          }  
       }else if (! buttonPressed[2] ) { 
          frame = 0;
       }
        emittingPointer = & animation[frame][0];
       }
    }else {
      buttonCounter = 0;
    }
    
  goto LOOP;
  
}

void loop(){}

Credits

Club Asimov

Club Asimov

1 project • 3 followers
The Asimov club brings together students from various disciplines to make devices, robots and inventive machines from recycling.

Comments