Our World has changed ..With the On-set of a global Pandemic authorities and the people under them are going to have to adapt to the new situation. I have designed a Heath Monitoring Bracelet and Data collection system which not only monitors your body temperature and heart rate but also reports your movements around the city via Bluetooth Transmitters and Receivers. This allows not only health data to be collected but also movement data as to whether you went into a hot zone and was in proximity with another person who may be infected. I believe using phones for tracking is good but the health data is not supported and there are privacy issues involved with the government monitoring phones. This alleviates that.
The main features of this device;
-Arduino Programmable
-Secure Data Transmission
-Laird BL652 Bluetooth 5 Module
-Two LED's for Indication and Alarms
-Battery powered and rechargeable
-AWS connectable via the Base stations and databases
-Longer range than RFID tags
-Stylish and Light
-LoRa and BLE technology working together as one unit providing security by multi layer encryption
I believe for us to get back to work and lead semi normal lives we need to monitor movements and the Virus. If everyone who leaves their home wears a bracelet we can monitor movements and health of our citizens to ensure that they are not exposed and if they are , we can contact trace by uploading the movement data for that person and cross reference with other bracelets to see who they were near and came in close contact with by the Bluetooth signature.
The Below 3D rendering of the the two boards. It more economical to produce the boards as one board and cut them apart when they are soldered. The boards are designed to be stacked together and work as 1 unit when powered up. the device will sleep periodically and wake up when in contact with a base unit.
The Basic Design Phase has been done and I am confident that it will work as required. The next phase of my project will be to
1. Manufacture some PCB's and 3D print the Bracelet.
After I made some initial changes to my PCB board to ensure I had all the bases covered and communication and programming was possible I sent my boards for manufacture to PCBway.com ..They are a low cost PCB manufacture with good service and reliable products for testing ...These are the Completed boards without parts from PCBWay.
2. Program the Bracelet and a base unit for demonstration purposes
To start with I started with the BL652 mounted on a test board from a previous project and connected to a Particle Photon and a DS18B20 temperature sensor and wired it up attached picture
I then downloaded and installed the APP "Module Link " and followed the guide (Click the Link).. https://www.lairdconnect.com/bl652-quick-start ..I then opened my particle app http://particle.io and uploaded a basic sketch which will write to Serial1 the result was a success I managed to read the temperature and send it to the BLE and read it on my Phone ...(STEP 1)
Next I took a MAX30105 Sensor from http://sparkfun.com to start testing the Pulse and temperature settings for the bracelet.
https://www.sparkfun.com/products/14045
I used this Library from Arduino and modified it for the Particle
These are the settings I needed
MAX30105.h This code will need to be modified slightly to accommodate the MAX30101 code but it should be close and a good starting point.
/***************************************************
This is a library written for the Maxim MAX30105 Optical Smoke Detector
It should also work with the MAX30102. However, the MAX30102 does not have a Green LED.
These sensors use I2C to communicate, as well as a single (optional)
interrupt line that is not currently supported in this driver.
Written by Peter Jansen and Nathan Seidle (SparkFun)
BSD license, all text above must be included in any redistribution.
*****************************************************/
#pragma once
#if (ARDUINO >= 100)
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#include <Wire.h>
#define MAX30105_ADDRESS 0x57 //7-bit I2C Address
//Note that MAX30102 has the same I2C address and Part ID
#define I2C_SPEED_STANDARD 100000
#define I2C_SPEED_FAST 400000
//Define the size of the I2C buffer based on the platform the user has
#if defined(__AVR_ATmega328P__) || defined(__AVR_ATmega168__)
//I2C_BUFFER_LENGTH is defined in Wire.H
#define I2C_BUFFER_LENGTH BUFFER_LENGTH
#elif defined(__SAMD21G18A__)
//SAMD21 uses RingBuffer.h
#define I2C_BUFFER_LENGTH SERIAL_BUFFER_SIZE
#else
//The catch-all default is 32
#define I2C_BUFFER_LENGTH 32
#endif
class MAX30105 {
public:
MAX30105(void);
boolean begin(TwoWire &wirePort = Wire, uint32_t i2cSpeed = I2C_SPEED_STANDARD, uint8_t i2caddr = MAX30105_ADDRESS);
uint32_t getRed(void); //Returns immediate red value
uint32_t getIR(void); //Returns immediate IR value
uint32_t getGreen(void); //Returns immediate green value
bool safeCheck(uint8_t maxTimeToCheck); //Given a max amount of time, check for new data
// Configuration
void softReset();
void shutDown();
void wakeUp();
void setLEDMode(uint8_t mode);
void setADCRange(uint8_t adcRange);
void setSampleRate(uint8_t sampleRate);
void setPulseWidth(uint8_t pulseWidth);
void setPulseAmplitudeRed(uint8_t value);
void setPulseAmplitudeIR(uint8_t value);
void setPulseAmplitudeGreen(uint8_t value);
void setPulseAmplitudeProximity(uint8_t value);
void setProximityThreshold(uint8_t threshMSB);
//Multi-led configuration mode (page 22)
void enableSlot(uint8_t slotNumber, uint8_t device); //Given slot number, assign a device to slot
void disableSlots(void);
// Data Collection
//Interrupts (page 13, 14)
uint8_t getINT1(void); //Returns the main interrupt group
uint8_t getINT2(void); //Returns the temp ready interrupt
void enableAFULL(void); //Enable/disable individual interrupts
void disableAFULL(void);
void enableDATARDY(void);
void disableDATARDY(void);
void enableALCOVF(void);
void disableALCOVF(void);
void enablePROXINT(void);
void disablePROXINT(void);
void enableDIETEMPRDY(void);
void disableDIETEMPRDY(void);
//FIFO Configuration (page 18)
void setFIFOAverage(uint8_t samples);
void enableFIFORollover();
void disableFIFORollover();
void setFIFOAlmostFull(uint8_t samples);
//FIFO Reading
uint16_t check(void); //Checks for new data and fills FIFO
uint8_t available(void); //Tells caller how many new samples are available (head - tail)
void nextSample(void); //Advances the tail of the sense array
uint32_t getFIFORed(void); //Returns the FIFO sample pointed to by tail
uint32_t getFIFOIR(void); //Returns the FIFO sample pointed to by tail
uint32_t getFIFOGreen(void); //Returns the FIFO sample pointed to by tail
uint8_t getWritePointer(void);
uint8_t getReadPointer(void);
void clearFIFO(void); //Sets the read/write pointers to zero
//Proximity Mode Interrupt Threshold
void setPROXINTTHRESH(uint8_t val);
// Die Temperature
float readTemperature();
float readTemperatureF();
// Detecting ID/Revision
uint8_t getRevisionID();
uint8_t readPartID();
// Setup the IC with user selectable settings
void setup(byte powerLevel = 0x1F, byte sampleAverage = 4, byte ledMode = 3, int sampleRate = 400, int pulseWidth = 411, int adcRange = 4096);
// Low-level I2C communication
uint8_t readRegister8(uint8_t address, uint8_t reg);
void writeRegister8(uint8_t address, uint8_t reg, uint8_t value);
private:
TwoWire *_i2cPort; //The generic connection to user's chosen I2C hardware
uint8_t _i2caddr;
//activeLEDs is the number of channels turned on, and can be 1 to 3. 2 is common for Red+IR.
byte activeLEDs; //Gets set during setup. Allows check() to calculate how many bytes to read from FIFO
uint8_t revisionID;
void readRevisionID();
void bitMask(uint8_t reg, uint8_t mask, uint8_t thing);
#define STORAGE_SIZE 4 //Each long is 4 bytes so limit this to fit on your micro
typedef struct Record
{
uint32_t red[STORAGE_SIZE];
uint32_t IR[STORAGE_SIZE];
uint32_t green[STORAGE_SIZE];
byte head;
byte tail;
} sense_struct; //This is our circular buffer of readings from the sensor
sense_struct sense;
};
/***************************************************
This is a library written for the Maxim MAX30105 Optical Smoke Detector
It should also work with the MAX30102. However, the MAX30102 does not have a Green LED.
These sensors use I2C to communicate, as well as a single (optional)
interrupt line that is not currently supported in this driver.
Written by Peter Jansen and Nathan Seidle (SparkFun)
BSD license, all text above must be included in any redistribution.
*****************************************************/
#include "MAX30105.h"
// Status Registers
static const uint8_t MAX30105_INTSTAT1 = 0x00;
static const uint8_t MAX30105_INTSTAT2 = 0x01;
static const uint8_t MAX30105_INTENABLE1 = 0x02;
static const uint8_t MAX30105_INTENABLE2 = 0x03;
// FIFO Registers
static const uint8_t MAX30105_FIFOWRITEPTR = 0x04;
static const uint8_t MAX30105_FIFOOVERFLOW = 0x05;
static const uint8_t MAX30105_FIFOREADPTR = 0x06;
static const uint8_t MAX30105_FIFODATA = 0x07;
// Configuration Registers
static const uint8_t MAX30105_FIFOCONFIG = 0x08;
static const uint8_t MAX30105_MODECONFIG = 0x09;
static const uint8_t MAX30105_PARTICLECONFIG = 0x0A; // Note, sometimes listed as "SPO2" config in datasheet (pg. 11)
static const uint8_t MAX30105_LED1_PULSEAMP = 0x0C;
static const uint8_t MAX30105_LED2_PULSEAMP = 0x0D;
static const uint8_t MAX30105_LED3_PULSEAMP = 0x0E;
static const uint8_t MAX30105_LED_PROX_AMP = 0x10;
static const uint8_t MAX30105_MULTILEDCONFIG1 = 0x11;
static const uint8_t MAX30105_MULTILEDCONFIG2 = 0x12;
// Die Temperature Registers
static const uint8_t MAX30105_DIETEMPINT = 0x1F;
static const uint8_t MAX30105_DIETEMPFRAC = 0x20;
static const uint8_t MAX30105_DIETEMPCONFIG = 0x21;
// Proximity Function Registers
static const uint8_t MAX30105_PROXINTTHRESH = 0x30;
// Part ID Registers
static const uint8_t MAX30105_REVISIONID = 0xFE;
static const uint8_t MAX30105_PARTID = 0xFF; // Should always be 0x15. Identical to MAX30102.
// MAX30105 Commands
// Interrupt configuration (pg 13, 14)
static const uint8_t MAX30105_INT_A_FULL_MASK = (byte)~0b10000000;
static const uint8_t MAX30105_INT_A_FULL_ENABLE = 0x80;
static const uint8_t MAX30105_INT_A_FULL_DISABLE = 0x00;
static const uint8_t MAX30105_INT_DATA_RDY_MASK = (byte)~0b01000000;
static const uint8_t MAX30105_INT_DATA_RDY_ENABLE = 0x40;
static const uint8_t MAX30105_INT_DATA_RDY_DISABLE = 0x00;
static const uint8_t MAX30105_INT_ALC_OVF_MASK = (byte)~0b00100000;
static const uint8_t MAX30105_INT_ALC_OVF_ENABLE = 0x20;
static const uint8_t MAX30105_INT_ALC_OVF_DISABLE = 0x00;
static const uint8_t MAX30105_INT_PROX_INT_MASK = (byte)~0b00010000;
static const uint8_t MAX30105_INT_PROX_INT_ENABLE = 0x10;
static const uint8_t MAX30105_INT_PROX_INT_DISABLE = 0x00;
static const uint8_t MAX30105_INT_DIE_TEMP_RDY_MASK = (byte)~0b00000010;
static const uint8_t MAX30105_INT_DIE_TEMP_RDY_ENABLE = 0x02;
static const uint8_t MAX30105_INT_DIE_TEMP_RDY_DISABLE = 0x00;
static const uint8_t MAX30105_SAMPLEAVG_MASK = (byte)~0b11100000;
static const uint8_t MAX30105_SAMPLEAVG_1 = 0x00;
static const uint8_t MAX30105_SAMPLEAVG_2 = 0x20;
static const uint8_t MAX30105_SAMPLEAVG_4 = 0x40;
static const uint8_t MAX30105_SAMPLEAVG_8 = 0x60;
static const uint8_t MAX30105_SAMPLEAVG_16 = 0x80;
static const uint8_t MAX30105_SAMPLEAVG_32 = 0xA0;
static const uint8_t MAX30105_ROLLOVER_MASK = 0xEF;
static const uint8_t MAX30105_ROLLOVER_ENABLE = 0x10;
static const uint8_t MAX30105_ROLLOVER_DISABLE = 0x00;
static const uint8_t MAX30105_A_FULL_MASK = 0xF0;
// Mode configuration commands (page 19)
static const uint8_t MAX30105_SHUTDOWN_MASK = 0x7F;
static const uint8_t MAX30105_SHUTDOWN = 0x80;
static const uint8_t MAX30105_WAKEUP = 0x00;
static const uint8_t MAX30105_RESET_MASK = 0xBF;
static const uint8_t MAX30105_RESET = 0x40;
static const uint8_t MAX30105_MODE_MASK = 0xF8;
static const uint8_t MAX30105_MODE_REDONLY = 0x02;
static const uint8_t MAX30105_MODE_REDIRONLY = 0x03;
static const uint8_t MAX30105_MODE_MULTILED = 0x07;
// Particle sensing configuration commands (pgs 19-20)
static const uint8_t MAX30105_ADCRANGE_MASK = 0x9F;
static const uint8_t MAX30105_ADCRANGE_2048 = 0x00;
static const uint8_t MAX30105_ADCRANGE_4096 = 0x20;
static const uint8_t MAX30105_ADCRANGE_8192 = 0x40;
static const uint8_t MAX30105_ADCRANGE_16384 = 0x60;
static const uint8_t MAX30105_SAMPLERATE_MASK = 0xE3;
static const uint8_t MAX30105_SAMPLERATE_50 = 0x00;
static const uint8_t MAX30105_SAMPLERATE_100 = 0x04;
static const uint8_t MAX30105_SAMPLERATE_200 = 0x08;
static const uint8_t MAX30105_SAMPLERATE_400 = 0x0C;
static const uint8_t MAX30105_SAMPLERATE_800 = 0x10;
static const uint8_t MAX30105_SAMPLERATE_1000 = 0x14;
static const uint8_t MAX30105_SAMPLERATE_1600 = 0x18;
static const uint8_t MAX30105_SAMPLERATE_3200 = 0x1C;
static const uint8_t MAX30105_PULSEWIDTH_MASK = 0xFC;
static const uint8_t MAX30105_PULSEWIDTH_69 = 0x00;
static const uint8_t MAX30105_PULSEWIDTH_118 = 0x01;
static const uint8_t MAX30105_PULSEWIDTH_215 = 0x02;
static const uint8_t MAX30105_PULSEWIDTH_411 = 0x03;
//Multi-LED Mode configuration (pg 22)
static const uint8_t MAX30105_SLOT1_MASK = 0xF8;
static const uint8_t MAX30105_SLOT2_MASK = 0x8F;
static const uint8_t MAX30105_SLOT3_MASK = 0xF8;
static const uint8_t MAX30105_SLOT4_MASK = 0x8F;
static const uint8_t SLOT_NONE = 0x00;
static const uint8_t SLOT_RED_LED = 0x01;
static const uint8_t SLOT_IR_LED = 0x02;
static const uint8_t SLOT_GREEN_LED = 0x03;
static const uint8_t SLOT_NONE_PILOT = 0x04;
static const uint8_t SLOT_RED_PILOT = 0x05;
static const uint8_t SLOT_IR_PILOT = 0x06;
static const uint8_t SLOT_GREEN_PILOT = 0x07;
static const uint8_t MAX_30105_EXPECTEDPARTID = 0x15;
MAX30105::MAX30105() {
// Constructor
}
boolean MAX30105::begin(TwoWire &wirePort, uint32_t i2cSpeed, uint8_t i2caddr) {
_i2cPort = &wirePort; //Grab which port the user wants us to use
_i2cPort->begin();
_i2cPort->setClock(i2cSpeed);
_i2caddr = i2caddr;
// Step 1: Initial Communication and Verification
// Check that a MAX30105 is connected
if (readPartID() != MAX_30105_EXPECTEDPARTID) {
// Error -- Part ID read from MAX30105 does not match expected part ID.
// This may mean there is a physical connectivity problem (broken wire, unpowered, etc).
return false;
}
// Populate revision ID
readRevisionID();
return true;
}
//
// Configuration
//
//Begin Interrupt configuration
uint8_t MAX30105::getINT1(void) {
return (readRegister8(_i2caddr, MAX30105_INTSTAT1));
}
uint8_t MAX30105::getINT2(void) {
return (readRegister8(_i2caddr, MAX30105_INTSTAT2));
}
void MAX30105::enableAFULL(void) {
bitMask(MAX30105_INTENABLE1, MAX30105_INT_A_FULL_MASK, MAX30105_INT_A_FULL_ENABLE);
}
void MAX30105::disableAFULL(void) {
bitMask(MAX30105_INTENABLE1, MAX30105_INT_A_FULL_MASK, MAX30105_INT_A_FULL_DISABLE);
}
void MAX30105::enableDATARDY(void) {
bitMask(MAX30105_INTENABLE1, MAX30105_INT_DATA_RDY_MASK, MAX30105_INT_DATA_RDY_ENABLE);
}
void MAX30105::disableDATARDY(void) {
bitMask(MAX30105_INTENABLE1, MAX30105_INT_DATA_RDY_MASK, MAX30105_INT_DATA_RDY_DISABLE);
}
void MAX30105::enableALCOVF(void) {
bitMask(MAX30105_INTENABLE1, MAX30105_INT_ALC_OVF_MASK, MAX30105_INT_ALC_OVF_ENABLE);
}
void MAX30105::disableALCOVF(void) {
bitMask(MAX30105_INTENABLE1, MAX30105_INT_ALC_OVF_MASK, MAX30105_INT_ALC_OVF_DISABLE);
}
void MAX30105::enablePROXINT(void) {
bitMask(MAX30105_INTENABLE1, MAX30105_INT_PROX_INT_MASK, MAX30105_INT_PROX_INT_ENABLE);
}
void MAX30105::disablePROXINT(void) {
bitMask(MAX30105_INTENABLE1, MAX30105_INT_PROX_INT_MASK, MAX30105_INT_PROX_INT_DISABLE);
}
void MAX30105::enableDIETEMPRDY(void) {
bitMask(MAX30105_INTENABLE2, MAX30105_INT_DIE_TEMP_RDY_MASK, MAX30105_INT_DIE_TEMP_RDY_ENABLE);
}
void MAX30105::disableDIETEMPRDY(void) {
bitMask(MAX30105_INTENABLE2, MAX30105_INT_DIE_TEMP_RDY_MASK, MAX30105_INT_DIE_TEMP_RDY_DISABLE);
}
//End Interrupt configuration
void MAX30105::softReset(void) {
bitMask(MAX30105_MODECONFIG, MAX30105_RESET_MASK, MAX30105_RESET);
// Poll for bit to clear, reset is then complete
// Timeout after 100ms
unsigned long startTime = millis();
while (millis() - startTime < 100)
{
uint8_t response = readRegister8(_i2caddr, MAX30105_MODECONFIG);
if ((response & MAX30105_RESET) == 0) break; //We're done!
delay(1); //Let's not over burden the I2C bus
}
}
void MAX30105::shutDown(void) {
// Put IC into low power mode (datasheet pg. 19)
// During shutdown the IC will continue to respond to I2C commands but will
// not update with or take new readings (such as temperature)
bitMask(MAX30105_MODECONFIG, MAX30105_SHUTDOWN_MASK, MAX30105_SHUTDOWN);
}
void MAX30105::wakeUp(void) {
// Pull IC out of low power mode (datasheet pg. 19)
bitMask(MAX30105_MODECONFIG, MAX30105_SHUTDOWN_MASK, MAX30105_WAKEUP);
}
void MAX30105::setLEDMode(uint8_t mode) {
// Set which LEDs are used for sampling -- Red only, RED+IR only, or custom.
// See datasheet, page 19
bitMask(MAX30105_MODECONFIG, MAX30105_MODE_MASK, mode);
}
void MAX30105::setADCRange(uint8_t adcRange) {
// adcRange: one of MAX30105_ADCRANGE_2048, _4096, _8192, _16384
bitMask(MAX30105_PARTICLECONFIG, MAX30105_ADCRANGE_MASK, adcRange);
}
void MAX30105::setSampleRate(uint8_t sampleRate) {
// sampleRate: one of MAX30105_SAMPLERATE_50, _100, _200, _400, _800, _1000, _1600, _3200
bitMask(MAX30105_PARTICLECONFIG, MAX30105_SAMPLERATE_MASK, sampleRate);
}
void MAX30105::setPulseWidth(uint8_t pulseWidth) {
// pulseWidth: one of MAX30105_PULSEWIDTH_69, _188, _215, _411
bitMask(MAX30105_PARTICLECONFIG, MAX30105_PULSEWIDTH_MASK, pulseWidth);
}
// NOTE: Amplitude values: 0x00 = 0mA, 0x7F = 25.4mA, 0xFF = 50mA (typical)
// See datasheet, page 21
void MAX30105::setPulseAmplitudeRed(uint8_t amplitude) {
writeRegister8(_i2caddr, MAX30105_LED1_PULSEAMP, amplitude);
}
void MAX30105::setPulseAmplitudeIR(uint8_t amplitude) {
writeRegister8(_i2caddr, MAX30105_LED2_PULSEAMP, amplitude);
}
void MAX30105::setPulseAmplitudeGreen(uint8_t amplitude) {
writeRegister8(_i2caddr, MAX30105_LED3_PULSEAMP, amplitude);
}
void MAX30105::setPulseAmplitudeProximity(uint8_t amplitude) {
writeRegister8(_i2caddr, MAX30105_LED_PROX_AMP, amplitude);
}
void MAX30105::setProximityThreshold(uint8_t threshMSB) {
// Set the IR ADC count that will trigger the beginning of particle-sensing mode.
// The threshMSB signifies only the 8 most significant-bits of the ADC count.
// See datasheet, page 24.
writeRegister8(_i2caddr, MAX30105_PROXINTTHRESH, threshMSB);
}
//Given a slot number assign a thing to it
//Devices are SLOT_RED_LED or SLOT_RED_PILOT (proximity)
//Assigning a SLOT_RED_LED will pulse LED
//Assigning a SLOT_RED_PILOT will ??
void MAX30105::enableSlot(uint8_t slotNumber, uint8_t device) {
uint8_t originalContents;
switch (slotNumber) {
case (1):
bitMask(MAX30105_MULTILEDCONFIG1, MAX30105_SLOT1_MASK, device);
break;
case (2):
bitMask(MAX30105_MULTILEDCONFIG1, MAX30105_SLOT2_MASK, device << 4);
break;
case (3):
bitMask(MAX30105_MULTILEDCONFIG2, MAX30105_SLOT3_MASK, device);
break;
case (4):
bitMask(MAX30105_MULTILEDCONFIG2, MAX30105_SLOT4_MASK, device << 4);
break;
default:
//Shouldn't be here!
break;
}
}
//Clears all slot assignments
void MAX30105::disableSlots(void) {
writeRegister8(_i2caddr, MAX30105_MULTILEDCONFIG1, 0);
writeRegister8(_i2caddr, MAX30105_MULTILEDCONFIG2, 0);
}
//
// FIFO Configuration
//
//Set sample average (Table 3, Page 18)
void MAX30105::setFIFOAverage(uint8_t numberOfSamples) {
bitMask(MAX30105_FIFOCONFIG, MAX30105_SAMPLEAVG_MASK, numberOfSamples);
}
//Resets all points to start in a known state
//Page 15 recommends clearing FIFO before beginning a read
void MAX30105::clearFIFO(void) {
writeRegister8(_i2caddr, MAX30105_FIFOWRITEPTR, 0);
writeRegister8(_i2caddr, MAX30105_FIFOOVERFLOW, 0);
writeRegister8(_i2caddr, MAX30105_FIFOREADPTR, 0);
}
//Enable roll over if FIFO over flows
void MAX30105::enableFIFORollover(void) {
bitMask(MAX30105_FIFOCONFIG, MAX30105_ROLLOVER_MASK, MAX30105_ROLLOVER_ENABLE);
}
//Disable roll over if FIFO over flows
void MAX30105::disableFIFORollover(void) {
bitMask(MAX30105_FIFOCONFIG, MAX30105_ROLLOVER_MASK, MAX30105_ROLLOVER_DISABLE);
}
//Set number of samples to trigger the almost full interrupt (Page 18)
//Power on default is 32 samples
//Note it is reverse: 0x00 is 32 samples, 0x0F is 17 samples
void MAX30105::setFIFOAlmostFull(uint8_t numberOfSamples) {
bitMask(MAX30105_FIFOCONFIG, MAX30105_A_FULL_MASK, numberOfSamples);
}
//Read the FIFO Write Pointer
uint8_t MAX30105::getWritePointer(void) {
return (readRegister8(_i2caddr, MAX30105_FIFOWRITEPTR));
}
//Read the FIFO Read Pointer
uint8_t MAX30105::getReadPointer(void) {
return (readRegister8(_i2caddr, MAX30105_FIFOREADPTR));
}
// Die Temperature
// Returns temp in C
float MAX30105::readTemperature() {
//DIE_TEMP_RDY interrupt must be enabled
//See issue 19: https://github.com/sparkfun/SparkFun_MAX3010x_Sensor_Library/issues/19
// Step 1: Config die temperature register to take 1 temperature sample
writeRegister8(_i2caddr, MAX30105_DIETEMPCONFIG, 0x01);
// Poll for bit to clear, reading is then complete
// Timeout after 100ms
unsigned long startTime = millis();
while (millis() - startTime < 100)
{
//uint8_t response = readRegister8(_i2caddr, MAX30105_DIETEMPCONFIG); //Original way
//if ((response & 0x01) == 0) break; //We're done!
//Check to see if DIE_TEMP_RDY interrupt is set
uint8_t response = readRegister8(_i2caddr, MAX30105_INTSTAT2);
if ((response & MAX30105_INT_DIE_TEMP_RDY_ENABLE) > 0) break; //We're done!
delay(1); //Let's not over burden the I2C bus
}
//TODO How do we want to fail? With what type of error?
//? if(millis() - startTime >= 100) return(-999.0);
// Step 2: Read die temperature register (integer)
int8_t tempInt = readRegister8(_i2caddr, MAX30105_DIETEMPINT);
uint8_t tempFrac = readRegister8(_i2caddr, MAX30105_DIETEMPFRAC); //Causes the clearing of the DIE_TEMP_RDY interrupt
// Step 3: Calculate temperature (datasheet pg. 23)
return (float)tempInt + ((float)tempFrac * 0.0625);
}
// Returns die temp in F
float MAX30105::readTemperatureF() {
float temp = readTemperature();
if (temp != -999.0) temp = temp * 1.8 + 32.0;
return (temp);
}
// Set the PROX_INT_THRESHold
void MAX30105::setPROXINTTHRESH(uint8_t val) {
writeRegister8(_i2caddr, MAX30105_PROXINTTHRESH, val);
}
//
// Device ID and Revision
//
uint8_t MAX30105::readPartID() {
return readRegister8(_i2caddr, MAX30105_PARTID);
}
void MAX30105::readRevisionID() {
revisionID = readRegister8(_i2caddr, MAX30105_REVISIONID);
}
uint8_t MAX30105::getRevisionID() {
return revisionID;
}
//Setup the sensor
//The MAX30105 has many settings. By default we select:
// Sample Average = 4
// Mode = MultiLED
// ADC Range = 16384 (62.5pA per LSB)
// Sample rate = 50
//Use the default setup if you are just getting started with the MAX30105 sensor
void MAX30105::setup(byte powerLevel, byte sampleAverage, byte ledMode, int sampleRate, int pulseWidth, int adcRange) {
softReset(); //Reset all configuration, threshold, and data registers to POR values
//FIFO Configuration
//-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
//The chip will average multiple samples of same type together if you wish
if (sampleAverage == 1) setFIFOAverage(MAX30105_SAMPLEAVG_1); //No averaging per FIFO record
else if (sampleAverage == 2) setFIFOAverage(MAX30105_SAMPLEAVG_2);
else if (sampleAverage == 4) setFIFOAverage(MAX30105_SAMPLEAVG_4);
else if (sampleAverage == 8) setFIFOAverage(MAX30105_SAMPLEAVG_8);
else if (sampleAverage == 16) setFIFOAverage(MAX30105_SAMPLEAVG_16);
else if (sampleAverage == 32) setFIFOAverage(MAX30105_SAMPLEAVG_32);
else setFIFOAverage(MAX30105_SAMPLEAVG_4);
//setFIFOAlmostFull(2); //Set to 30 samples to trigger an 'Almost Full' interrupt
enableFIFORollover(); //Allow FIFO to wrap/roll over
//-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
//Mode Configuration
//-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
if (ledMode == 3) setLEDMode(MAX30105_MODE_MULTILED); //Watch all three LED channels
else if (ledMode == 2) setLEDMode(MAX30105_MODE_REDIRONLY); //Red and IR
else setLEDMode(MAX30105_MODE_REDONLY); //Red only
activeLEDs = ledMode; //Used to control how many bytes to read from FIFO buffer
//-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
//Particle Sensing Configuration
//-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
if(adcRange < 4096) setADCRange(MAX30105_ADCRANGE_2048); //7.81pA per LSB
else if(adcRange < 8192) setADCRange(MAX30105_ADCRANGE_4096); //15.63pA per LSB
else if(adcRange < 16384) setADCRange(MAX30105_ADCRANGE_8192); //31.25pA per LSB
else if(adcRange == 16384) setADCRange(MAX30105_ADCRANGE_16384); //62.5pA per LSB
else setADCRange(MAX30105_ADCRANGE_2048);
if (sampleRate < 100) setSampleRate(MAX30105_SAMPLERATE_50); //Take 50 samples per second
else if (sampleRate < 200) setSampleRate(MAX30105_SAMPLERATE_100);
else if (sampleRate < 400) setSampleRate(MAX30105_SAMPLERATE_200);
else if (sampleRate < 800) setSampleRate(MAX30105_SAMPLERATE_400);
else if (sampleRate < 1000) setSampleRate(MAX30105_SAMPLERATE_800);
else if (sampleRate < 1600) setSampleRate(MAX30105_SAMPLERATE_1000);
else if (sampleRate < 3200) setSampleRate(MAX30105_SAMPLERATE_1600);
else if (sampleRate == 3200) setSampleRate(MAX30105_SAMPLERATE_3200);
else setSampleRate(MAX30105_SAMPLERATE_50);
//The longer the pulse width the longer range of detection you'll have
//At 69us and 0.4mA it's about 2 inches
//At 411us and 0.4mA it's about 6 inches
if (pulseWidth < 118) setPulseWidth(MAX30105_PULSEWIDTH_69); //Page 26, Gets us 15 bit resolution
else if (pulseWidth < 215) setPulseWidth(MAX30105_PULSEWIDTH_118); //16 bit resolution
else if (pulseWidth < 411) setPulseWidth(MAX30105_PULSEWIDTH_215); //17 bit resolution
else if (pulseWidth == 411) setPulseWidth(MAX30105_PULSEWIDTH_411); //18 bit resolution
else setPulseWidth(MAX30105_PULSEWIDTH_69);
//-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
//LED Pulse Amplitude Configuration
//-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
//Default is 0x1F which gets us 6.4mA
//powerLevel = 0x02, 0.4mA - Presence detection of ~4 inch
//powerLevel = 0x1F, 6.4mA - Presence detection of ~8 inch
//powerLevel = 0x7F, 25.4mA - Presence detection of ~8 inch
//powerLevel = 0xFF, 50.0mA - Presence detection of ~12 inch
setPulseAmplitudeRed(powerLevel);
setPulseAmplitudeIR(powerLevel);
setPulseAmplitudeGreen(powerLevel);
setPulseAmplitudeProximity(powerLevel);
//-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
//Multi-LED Mode Configuration, Enable the reading of the three LEDs
//-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
enableSlot(1, SLOT_RED_LED);
if (ledMode > 1) enableSlot(2, SLOT_IR_LED);
if (ledMode > 2) enableSlot(3, SLOT_GREEN_LED);
//enableSlot(1, SLOT_RED_PILOT);
//enableSlot(2, SLOT_IR_PILOT);
//enableSlot(3, SLOT_GREEN_PILOT);
//-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
clearFIFO(); //Reset the FIFO before we begin checking the sensor
}
//
// Data Collection
//
//Tell caller how many samples are available
uint8_t MAX30105::available(void)
{
int8_t numberOfSamples = sense.head - sense.tail;
if (numberOfSamples < 0) numberOfSamples += STORAGE_SIZE;
return (numberOfSamples);
}
//Report the most recent red value
uint32_t MAX30105::getRed(void)
{
//Check the sensor for new data for 250ms
if(safeCheck(250))
return (sense.red[sense.head]);
else
return(0); //Sensor failed to find new data
}
//Report the most recent IR value
uint32_t MAX30105::getIR(void)
{
//Check the sensor for new data for 250ms
if(safeCheck(250))
return (sense.IR[sense.head]);
else
return(0); //Sensor failed to find new data
}
//Report the most recent Green value
uint32_t MAX30105::getGreen(void)
{
//Check the sensor for new data for 250ms
if(safeCheck(250))
return (sense.green[sense.head]);
else
return(0); //Sensor failed to find new data
}
//Report the next Red value in the FIFO
uint32_t MAX30105::getFIFORed(void)
{
return (sense.red[sense.tail]);
}
//Report the next IR value in the FIFO
uint32_t MAX30105::getFIFOIR(void)
{
return (sense.IR[sense.tail]);
}
//Report the next Green value in the FIFO
uint32_t MAX30105::getFIFOGreen(void)
{
return (sense.green[sense.tail]);
}
//Advance the tail
void MAX30105::nextSample(void)
{
if(available()) //Only advance the tail if new data is available
{
sense.tail++;
sense.tail %= STORAGE_SIZE; //Wrap condition
}
}
//Polls the sensor for new data
//Call regularly
//If new data is available, it updates the head and tail in the main struct
//Returns number of new samples obtained
uint16_t MAX30105::check(void)
{
//Read register FIDO_DATA in (3-byte * number of active LED) chunks
//Until FIFO_RD_PTR = FIFO_WR_PTR
byte readPointer = getReadPointer();
byte writePointer = getWritePointer();
int numberOfSamples = 0;
//Do we have new data?
if (readPointer != writePointer)
{
//Calculate the number of readings we need to get from sensor
numberOfSamples = writePointer - readPointer;
if (numberOfSamples < 0) numberOfSamples += 32; //Wrap condition
//We now have the number of readings, now calc bytes to read
//For this example we are just doing Red and IR (3 bytes each)
int bytesLeftToRead = numberOfSamples * activeLEDs * 3;
//Get ready to read a burst of data from the FIFO register
_i2cPort->beginTransmission(MAX30105_ADDRESS);
_i2cPort->write(MAX30105_FIFODATA);
_i2cPort->endTransmission();
//We may need to read as many as 288 bytes so we read in blocks no larger than I2C_BUFFER_LENGTH
//I2C_BUFFER_LENGTH changes based on the platform. 64 bytes for SAMD21, 32 bytes for Uno.
//Wire.requestFrom() is limited to BUFFER_LENGTH which is 32 on the Uno
while (bytesLeftToRead > 0)
{
int toGet = bytesLeftToRead;
if (toGet > I2C_BUFFER_LENGTH)
{
//If toGet is 32 this is bad because we read 6 bytes (Red+IR * 3 = 6) at a time
//32 % 6 = 2 left over. We don't want to request 32 bytes, we want to request 30.
//32 % 9 (Red+IR+GREEN) = 5 left over. We want to request 27.
toGet = I2C_BUFFER_LENGTH - (I2C_BUFFER_LENGTH % (activeLEDs * 3)); //Trim toGet to be a multiple of the samples we need to read
}
bytesLeftToRead -= toGet;
//Request toGet number of bytes from sensor
_i2cPort->requestFrom(MAX30105_ADDRESS, toGet);
while (toGet > 0)
{
sense.head++; //Advance the head of the storage struct
sense.head %= STORAGE_SIZE; //Wrap condition
byte temp[sizeof(uint32_t)]; //Array of 4 bytes that we will convert into long
uint32_t tempLong;
//Burst read three bytes - RED
temp[3] = 0;
temp[2] = _i2cPort->read();
temp[1] = _i2cPort->read();
temp[0] = _i2cPort->read();
//Convert array to long
memcpy(&tempLong, temp, sizeof(tempLong));
tempLong &= 0x3FFFF; //Zero out all but 18 bits
sense.red[sense.head] = tempLong; //Store this reading into the sense array
if (activeLEDs > 1)
{
//Burst read three more bytes - IR
temp[3] = 0;
temp[2] = _i2cPort->read();
temp[1] = _i2cPort->read();
temp[0] = _i2cPort->read();
//Convert array to long
memcpy(&tempLong, temp, sizeof(tempLong));
tempLong &= 0x3FFFF; //Zero out all but 18 bits
sense.IR[sense.head] = tempLong;
}
if (activeLEDs > 2)
{
//Burst read three more bytes - Green
temp[3] = 0;
temp[2] = _i2cPort->read();
temp[1] = _i2cPort->read();
temp[0] = _i2cPort->read();
//Convert array to long
memcpy(&tempLong, temp, sizeof(tempLong));
tempLong &= 0x3FFFF; //Zero out all but 18 bits
sense.green[sense.head] = tempLong;
}
toGet -= activeLEDs * 3;
}
} //End while (bytesLeftToRead > 0)
} //End readPtr != writePtr
return (numberOfSamples); //Let the world know how much new data we found
}
//Check for new data but give up after a certain amount of time
//Returns true if new data was found
//Returns false if new data was not found
bool MAX30105::safeCheck(uint8_t maxTimeToCheck)
{
uint32_t markTime = millis();
while(1)
{
if(millis() - markTime > maxTimeToCheck) return(false);
if(check() == true) //We found new data!
return(true);
delay(1);
}
}
//Given a register, read it, mask it, and then set the thing
void MAX30105::bitMask(uint8_t reg, uint8_t mask, uint8_t thing)
{
// Grab current register context
uint8_t originalContents = readRegister8(_i2caddr, reg);
// Zero-out the portions of the register we're interested in
originalContents = originalContents & mask;
// Change contents
writeRegister8(_i2caddr, reg, originalContents | thing);
}
//
// Low-level I2C Communication
//
uint8_t MAX30105::readRegister8(uint8_t address, uint8_t reg) {
_i2cPort->beginTransmission(address);
_i2cPort->write(reg);
_i2cPort->endTransmission(false);
_i2cPort->requestFrom((uint8_t)address, (uint8_t)1); // Request 1 byte
if (_i2cPort->available())
{
return(_i2cPort->read());
}
return (0); //Fail
}
void MAX30105::writeRegister8(uint8_t address, uint8_t reg, uint8_t value) {
_i2cPort->beginTransmission(address);
_i2cPort->write(reg);
_i2cPort->write(value);
_i2cPort->endTransmission();
}
Particle test Code for the MAX30105 & Serial Write
// This #include statement was automatically added by the Particle IDE.
#include "MAX30105.h"
#include <ParticleSoftSerial.h>
#include <SPI.h>
#include <Wire.h>
#define SENDER Serial1
#define RECEIVER SoftSer
#define PROTOCOL SERIAL_8N1
const uint32_t baud = 115200;
#if (SYSTEM_VERSION >= 0x00060000)
SerialLogHandler logHandler;
#endif
#define PSS_RX D2 // RX must be interrupt enabled (on Photon/Electron D0/A5 are not)
#define PSS_TX D3
ParticleSoftSerial SoftSer(PSS_RX, PSS_TX);
//==========================================
//=========================================
MAX30105 particleSensor;
long startTime;
long samplesTaken = 0;
//==================================
void setup()
{
Serial.begin(9600);
SENDER.begin(baud, PROTOCOL); // baud rates below 1200 can't be produced by USART
RECEIVER.begin(baud, PROTOCOL); // but SoftSerial can ;-)
//===================================
pinMode(D3, OUTPUT);
pinMode(D5, OUTPUT);
digitalWrite(D3, LOW);
digitalWrite(D5, HIGH);
//============== **MAX3015** =====================
Serial.println("MAX30105 Basic Readings Example");
particleSensor.begin();
particleSensor.setup(); //Configure sensor. Use 6.4mA for LED drive
byte ledBrightness = 0x1f; //Options: 0=Off to 255=50mA
byte sampleAverage = 8; //Options: 1, 2, 4, 8, 16, 32
byte ledMode = 3; //Options: 1 = Red only, 2 = Red + IR, 3 = Red + IR + Green
int sampleRate = 100; //Options: 50, 100, 200, 400, 800, 1000, 1600, 3200
int pulseWidth = 411; //Options: 69, 118, 215, 411
int adcRange = 4096; //Options: 2048, 4096, 8192, 16384
particleSensor.setup(ledBrightness, sampleAverage, ledMode, sampleRate, pulseWidth, adcRange); //Configure sensor with these settings
particleSensor.enableDIETEMPRDY();
startTime = millis();
//Take an average of IR readings at power up
const byte avgAmount = 64;
long baseValue = 0;
for (byte x = 0 ; x < avgAmount ; x++)
{
baseValue += particleSensor.getIR(); //Read the IR value
}
baseValue /= avgAmount;
//Pre-populate the plotter so that the Y scale is close to IR values
for (int x = 0 ; x < 500 ; x++)
Serial.println(baseValue);
//==================================
}
char szTX[64];
char szRX[64];
void loop()
{
int len;
char message[256];
//========================**MAX30105***===============================
samplesTaken++;
Serial.print(" R[");
Serial.print(particleSensor.getRed());
float RED = particleSensor.getRed();
Serial.print("] IR[");
float IR = particleSensor.getIR();
Serial.print(particleSensor.getIR());
Serial.print("] G[");
float GRN = particleSensor.getGreen();
Serial.print(particleSensor.getGreen());
Serial.print("] Hz[");
Serial.print((float)samplesTaken / ((millis() - startTime) / 1000.0), 2);
Serial.print("]");
float temperature = particleSensor.readTemperature();
Serial.print("temperatureC=");
Serial.print(temperature, 4);
Serial.println();
Serial.print("Pulse[ ");
Serial.print(particleSensor.getIR());
Serial.println(" ]");
particleSensor.nextSample();
//==================**Send To APP ***======================================
// strcpy(szTX, "Sample Test Send");
sprintf(message,"Pulse %d ,Temp %.2f ",particleSensor.getIR(),particleSensor.readTemperature());
// strcpy(szTX,message);
//=========================================================================
memset(szRX, 0, sizeof(szRX));
//strcpy(szTX, "0123456789abcdefghijklmnopqrtstuvwxyz����\xFF"); // add some exotic chars too
strcpy(szTX,message);
len = strlen(szTX) + 1;
SENDER.write((uint8_t*)szTX, len);
for(uint32_t ms = millis(); millis() - ms < 1000 && RECEIVER.available() < len; Particle.process());
for(int i = 0; i < len; i++)
{
szRX[i] = RECEIVER.read();
}
RECEIVER.flush();
Serial.printlnf("%s\n\r%s", szTX, szRX); // print out both strings
if (len = strcmp(szRX, szTX))
{
delay(5000);
}
//==========================================================
}
The Test message so everything is going good so far ,,Next I have to modify the smart basic code to read the Module RSSI and and send the data when connected to the base station,
What I intend to do is to have the SAMD21G18 running Arduino code to save the data location and proximity data from the BL652 and send it along with the temperature data when it comes in contact with a base station.
The SamD21G18 doesn't need to be sending continually every second it can relax a bit and some heavy lifting can be done with the BLE652 by sending 3.3 volts to a pin when connected or nearing a base station / Or another Bracelet to wake up the SAMD21G18 and send the current data or to record the Other Modules ID ..
3. Bracelet Build and Programming
4. Programming the boards Boot-loader and program
First download and install Atmel Studio 7 link Below
https://www.microchip.com/mplab/avr-support/atmel-studio-7
5. Get a quote for manufacture of the base unit and bracelet.
6. Modifications to the current design
Comments