Salman Faris
Published © MIT

Play Chrome's Dino Game Physically 🦕

Learn how to play Chrome's dino game physically using Edge Impulse and Seeed Studio Wio Terminal.

IntermediateFull instructions provided4 hours1,793

Things used in this project

Hardware components

Wio Terminal
Seeed Studio Wio Terminal
×1

Software apps and online services

Edge Impulse Studio
Edge Impulse Studio
Arduino IDE
Arduino IDE
Google Chrome Browser
Accomdemy

Story

Read more

Schematics

Training Architecture

Sampling and Inferencing Architecture

Dino Edge Impulse Library

Code

Wio-Terminal-Jump-Classification

C/C++
/* Includes ---------------------------------------------------------------- */
#include <seeed-wioTerminal_inferencing.h>
#include"LIS3DHTR.h"
LIS3DHTR<TwoWire> lis;
#include "Keyboard.h" //keyboard library

/* Constant defines -------------------------------------------------------- */
#define CONVERT_G_TO_MS2    9.80665f

/* Private variables ------------------------------------------------------- */
static bool debug_nn = false; // Set this to true to see e.g. features generated from the raw signal

/**
  @brief      Arduino setup function
*/
void setup()
{
  // put your setup code here, to run once:
  Serial.begin(115200);
  while (!Serial) {
  }
  Serial.println("Edge Impulse Inferencing Demo");

  lis.begin(Wire1);

  if (!lis.available()) {
    ei_printf("Failed to initialize IMU!\r\n");
    while (1);
  }
  else {
    ei_printf("IMU initialized\r\n");
  }

  lis.setOutputDataRate(LIS3DHTR_DATARATE_100HZ); // Setting output data rage to 25Hz, can be set up tp 5kHz
  lis.setFullScaleRange(LIS3DHTR_RANGE_16G); // Setting scale range to 2g, select from 2,4,8,16g

  if (EI_CLASSIFIER_RAW_SAMPLES_PER_FRAME != 3) {
    ei_printf("ERR: EI_CLASSIFIER_RAW_SAMPLES_PER_FRAME should be equal to 3 (the 3 sensor axes)\n");
    return;
  }
}

/**
  @brief      Printf function uses vsnprintf and output using Arduino Serial

  @param[in]  format     Variable argument list
*/
void ei_printf(const char *format, ...) {
  static char print_buf[1024] = { 0 };

  va_list args;
  va_start(args, format);
  int r = vsnprintf(print_buf, sizeof(print_buf), format, args);
  va_end(args);

  if (r > 0) {
    Serial.write(print_buf);
  }
}

/**
  @brief      Get data and run inferencing

  @param[in]  debug  Get debug info if true
*/
void loop()
{
  ei_printf("Sampling...\n");

  // Allocate a buffer here for the values we'll read from the IMU
  float buffer[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE] = {0};

  for (size_t ix = 0; ix < EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE; ix += 3) {
    // Determine the next tick (and then sleep later)
    uint64_t next_tick = micros() + (EI_CLASSIFIER_INTERVAL_MS * 1000);

    lis.getAcceleration(&buffer[ix], &buffer[ix + 1], &buffer[ix + 2]);

    buffer[ix + 0] *= CONVERT_G_TO_MS2;
    buffer[ix + 1] *= CONVERT_G_TO_MS2;
    buffer[ix + 2] *= CONVERT_G_TO_MS2;

    delayMicroseconds(next_tick - micros());
  }

  // Turn the raw buffer in a signal which we can the classify
  signal_t signal;
  int err = numpy::signal_from_buffer(buffer, EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE, &signal);
  if (err != 0) {
    ei_printf("Failed to create signal from buffer (%d)\n", err);
    return;
  }

  // Run the classifier
  ei_impulse_result_t result = { 0 };

  err = run_classifier(&signal, &result, debug_nn);
  if (err != EI_IMPULSE_OK) {
    ei_printf("ERR: Failed to run classifier (%d)\n", err);
    return;
  }

  // print the predictions
  ei_printf("Predictions ");
  ei_printf("(DSP: %d ms., Classification: %d ms., Anomaly: %d ms.)",
            result.timing.dsp, result.timing.classification, result.timing.anomaly);
  ei_printf(": \n");
  for (size_t ix = 0; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) {
    ei_printf("    %s: %.5f\n", result.classification[ix].label, result.classification[ix].value);

    if (result.classification[1].value > 0) {
      Serial.println("Jumped...................");
      Keyboard.write(KEY_UP_ARROW);
     delay(100);
      
    }



  }
#if EI_CLASSIFIER_HAS_ANOMALY == 1
  ei_printf("    anomaly score: %.3f\n", result.anomaly);
#endif
}

#if !defined(EI_CLASSIFIER_SENSOR) || EI_CLASSIFIER_SENSOR != EI_CLASSIFIER_SENSOR_ACCELEROMETER
#error "Invalid model for current sensor"
#endif

Credits

Salman Faris
27 projects • 418 followers
Maker | Hardware Hacker | Electronics Enthusiast

Comments