Hardware components | ||||||
| × | 1 | ||||
Software apps and online services | ||||||
| ||||||
Hand tools and fabrication machines | ||||||
|
20USD total with free shipping worldwide for the complete project! Anybody can build this. You only need an Arduino MEGA power, a Switch, and a Mic sensor.
It looks like that the ONLINE community has changed in what OPEN SOURCE MEANS, the sell it to you like that but when you gain a name they come back for the shine you have, because of your own HARD work, this is the world we now life in. One of LIKES and PROFIT and FAME, yes ppl it is that TIME.
TIMELESS or SHAMELESS, you tell me. who wants to go in the TIMELINE OF A FAME SEEKER?The foundations of this code is based on the same document made available by Arduino.cc under the Creative Commons Sharealike license. This derivative document is licensed under the Creative Commons Sharealike license. 3.0 C++ Creative Commons Attribution ShareAlike License V3.0
- Arduino MEGA
- WS2812 LED Ring
- Switches
- Mic Audio Sensor, https://www.banggood.com/CJMCU-4466-MAX4466-Electret-Microphone-Adjustable-Amplifier-CMA-4544PF-W-For-Arduino-p-1101527.html?rmmds=NI03162039418201508L
For some BARGAINS check BangGood; all my gear comes from them: https://www.banggood.com/?p=NI0316203
The ring parts are almost never round and will, because of that, not fit to the next piece. Just use tape and then add on, like I did, pieces of legs from LEDs or whatever you have. ONLY soldering them will be a PAIN in the a... so don't even try it.
And use a vile to smooth the breaking points and then glue them. Then add the tape and solder them. You can solder all the GNDs and 5Vs, but only 1 INPUT you do not connect and the rest you connect together. The one input that is single is your INPUT PIN, of course, for PIN 6 on the Arduino Mega2560. Place a 330 Ohm resistor in series with it, also.
Connect Ground to the Arduino Mega, and connect a Ground and 5V to an external power supply; because the Mega has only 400mAh output, the Mega can be damaged.
Also, for safety, add a 1000 UF capacitor on the input for the LED Ring in series with Ground and 5 volts to the LEDs.
VU Meter Clock Style
C/C++TIPS, works only on an Arduino Mega, and only on Arduino 1.6 rev 5 link to download, https://www.arduino.cc/en/Main/OldSoftwareReleases#previous
DOWNLOAD THIS CODE it has all the attachments in the code the extra pages, https://drive.google.com/open?id=1U1mUL05USr5QgTmRLqZ1IiEysXvok8yt
The 2 libraries are the Neopixel link, https://github.com/adafruit/Adafruit_NeoPixel
And the FastLEDlib link, https://github.com/FastLED/FastLED
All the pinout wiring is in the code. PIN 6 is the LED ring, Mic is A5 and an extra wire from the 3.3V mic to AREF pinout on the Mega, it will not work if you won't do that. and in the code, it says SWITCH on pin 4, but it is on, 0/RX and GROUND.
//The foundations of this code is based on the same document made available by Arduino.cc under the Creative Commons Sharealike license. This derivative document is licensed under the Creative Commons Sharealike license. 3.0 C++
#include <Adafruit_NeoPixel.h>
#include <FastLED.h>
#include "water_torture.h"
#include <math.h>
#include <SoftwareSerial.h>
#define N_PIXELS 40 // Number of pixels in strand
#define N_PIXELS_HALF (N_PIXELS/2)
#define MIC_PIN A5 // Microphone is attached to this analog pin Do not forget to put a wire from the 3.3v mic input to the AREF on the Mega or it will not work
#define LED_PIN 6 // NeoPixel LED strand is connected to this pin
#define SAMPLE_WINDOW 10 // Sample window for average level
#define PEAK_HANG 24 //Time of pause before peak dot falls
#define PEAK_FALL 20 //Rate of falling peak dot
#define PEAK_FALL2 8 //Rate of falling peak dot
#define INPUT_FLOOR 10 //Lower range of analogRead input
#define INPUT_CEILING 300 //Max range of analogRead input, the lower the value the more sensitive (1023 = max)300 (150)
#define DC_OFFSET 0 // DC offset in mic signal - if unusure, leave 0
#define NOISE 10 // Noise/hum/interference in mic signal
#define SAMPLES 60 // Length of buffer for dynamic level adjustment
#define TOP (N_PIXELS + 2) // Allow dot to go slightly off scale
#define SPEED .20 // Amount to increment RGB color by each cycle
#define TOP2 (N_PIXELS + 1) // Allow dot to go slightly off scale
#define LAST_PIXEL_OFFSET N_PIXELS-1
#define PEAK_FALL_MILLIS 10 // Rate of peak falling dot
#define POT_PIN 4 //It is not pin 4 but 0/RX and GND
#define BG 0
#define LAST_PIXEL_OFFSET N_PIXELS-1
#define SPARKING 50
#define COOLING 55
#define FRAMES_PER_SECOND 60
#define NUM_BALLS 4 // Number of bouncing balls you want (recommend < 7, but 20 is fun in its own way)
#define GRAVITY -9.81 // Downward (negative) acceleration of gravity in m/s^2
#define h0 1 // Starting height, in meters, of the ball (strip length)
#if FASTLED_VERSION < 3001000
#error "Requires FastLED 3.1 or later; check github for latest code."
#endif
#define BRIGHTNESS 250
#define LED_TYPE WS2812B // Only use the LED_PIN for WS2812's
#define COLOR_ORDER GRB
#define COLOR_MIN 0
#define COLOR_MAX 255
#define DRAW_MAX 100
#define SEGMENTS 4 // Number of segments to carve amplitude bar into
#define COLOR_WAIT_CYCLES 10 // Loop cycles to wait between advancing pixel origin
#define qsubd(x, b) ((x>b)?b:0)
#define qsuba(x, b) ((x>b)?x-b:0) // Analog Unsigned subtraction macro. if result <0, then => 0. By Andrew Tuline.
#define ARRAY_SIZE(A) (sizeof(A) / sizeof((A)[0]))
//config for balls
float h[NUM_BALLS] ; // An array of heights
float vImpact0 = sqrt( -2 * GRAVITY * h0 ); // Impact velocity of the ball when it hits the ground if "dropped" from the top of the strip
float vImpact[NUM_BALLS] ; // As time goes on the impact velocity will change, so make an array to store those values
float tCycle[NUM_BALLS] ; // The time since the last time the ball struck the ground
int pos[NUM_BALLS] ; // The integer position of the dot on the strip (LED index)
long tLast[NUM_BALLS] ; // The clock time of the last ground strike
float COR[NUM_BALLS] ; // Coefficient of Restitution (bounce damping)
struct CRGB leds[N_PIXELS];
Adafruit_NeoPixel strip = Adafruit_NeoPixel(N_PIXELS, LED_PIN, NEO_GRB + NEO_KHZ800);
static uint16_t dist; // A random number for noise generator.
uint16_t scale = 30; // Wouldn't recommend changing this on the fly, or the animation will be really blocky.
uint8_t maxChanges = 48; // Value for blending between palettes.
//CRGBPalette16 currentPalette(CRGB::Black);
CRGBPalette16 currentPalette(OceanColors_p);
CRGBPalette16 targetPalette(CloudColors_p);
// Water torture
WaterTorture water_torture = WaterTorture(&strip);
//new ripple vu
uint8_t timeval = 20; // Currently 'delay' value. No, I don't use delays, I use EVERY_N_MILLIS_I instead.
uint16_t loops = 0; // Our loops per second counter.
bool samplepeak = 0; // This sample is well above the average, and is a 'peak'.
uint16_t oldsample = 0; // Previous sample is used for peak detection and for 'on the fly' values.
bool thisdir = 0;
//new ripple vu
// Modes
enum
{
} MODE;
bool reverse = true;
int BRIGHTNESS_MAX = 80;
int brightness = 20;
byte
// peak = 0, // Used for falling dot
// dotCount = 0, // Frame counter for delaying dot-falling speed
volCount = 0; // Frame counter for storing past volume data
int
reading,
vol[SAMPLES], // Collection of prior volume samples
lvl = 10, // Current "dampened" audio level
minLvlAvg = 0, // For dynamic adjustment of graph low & high
maxLvlAvg = 512;
float
greenOffset = 30,
blueOffset = 150;
// cycle variables
int CYCLE_MIN_MILLIS = 2;
int CYCLE_MAX_MILLIS = 1000;
int cycleMillis = 20;
bool paused = false;
long lastTime = 0;
bool boring = true;
bool gReverseDirection = false;
int myhue = 0;
//vu ripple
uint8_t colour;
uint8_t myfade = 255; // Starting brightness.
#define maxsteps 16 // Case statement wouldn't allow a variable.
int peakspersec = 0;
int peakcount = 0;
uint8_t bgcol = 0;
int thisdelay = 20;
// FOR SYLON ETC
uint8_t thisbeat = 23;
uint8_t thatbeat = 28;
uint8_t thisfade = 2; // How quickly does it fade? Lower = slower fade rate.
uint8_t thissat = 255; // The saturation, where 255 = brilliant colours.
uint8_t thisbri = 255;
//FOR JUGGLE
uint8_t numdots = 4; // Number of dots in use.
uint8_t faderate = 2; // How long should the trails be. Very low value = longer trails.
uint8_t hueinc = 16; // Incremental change in hue between each dot.
uint8_t thishue = 0; // Starting hue.
uint8_t curhue = 0;
uint8_t thisbright = 255; // How bright should the LED/display be.
uint8_t basebeat = 5;
uint8_t max_bright = 255;
// Twinkle
float redStates[N_PIXELS];
float blueStates[N_PIXELS];
float greenStates[N_PIXELS];
float Fade = 0.96;
unsigned int sample;
//Samples
#define NSAMPLES 64
unsigned int samplearray[NSAMPLES];
unsigned long samplesum = 0;
unsigned int sampleavg = 0;
int samplecount = 0;
//unsigned int sample = 0;
unsigned long oldtime = 0;
unsigned long newtime = 0;
//Ripple variables
int color;
int center = 0;
int step = -1;
int maxSteps = 16;
float fadeRate = 0.80;
int diff;
//vu 8 variables
int
origin = 0,
color_wait_count = 0,
scroll_color = COLOR_MIN,
last_intensity = 0,
intensity_max = 0,
origin_at_flip = 0;
uint32_t
draw[DRAW_MAX];
boolean
growing = false,
fall_from_left = true;
//background color
uint32_t currentBg = random(256);
uint32_t nextBg = currentBg;
//CRGBPalette16 currentPalette;
//CRGBPalette16 targetPalette;
TBlendType currentBlending;
const int buttonPin = 0; // the number of the pushbutton pin
//Variables will change:
int buttonPushCounter = 0; // counter for the number of button presses
int buttonState = 0; // current state of the button
int lastButtonState = 0;
byte peak = 16; // Peak level of column; used for falling dots
// unsigned int sample;
byte dotCount = 0; //Frame counter for peak dot
byte dotHangCount = 0; //Frame counter for holding peak dot
void setup() {
analogReference(EXTERNAL);
pinMode(buttonPin, INPUT);
//initialize the buttonPin as output
digitalWrite(buttonPin, HIGH);
// Serial.begin(9600);
strip.begin();
strip.show(); // all pixels to 'off'
Serial.begin(57600);
delay(3000);
LEDS.addLeds<LED_TYPE,LED_PIN,COLOR_ORDER>(leds,N_PIXELS).setCorrection(TypicalLEDStrip);
LEDS.setBrightness(BRIGHTNESS);
dist = random16(12345); // A semi-random number for our noise generator
for (int i = 0 ; i < NUM_BALLS ; i++) { // Initialize variables
tLast[i] = millis();
h[i] = h0;
pos[i] = 0; // Balls start on the ground
vImpact[i] = vImpact0; // And "pop" up at vImpact0
tCycle[i] = 0;
COR[i] = 0.90 - float(i)/pow(NUM_BALLS,2);
}
}
float fscale( float originalMin, float originalMax, float newBegin, float newEnd, float inputValue, float curve){
float OriginalRange = 0;
float NewRange = 0;
float zeroRefCurVal = 0;
float normalizedCurVal = 0;
float rangedValue = 0;
boolean invFlag = 0;
// condition curve parameter
// limit range
if (curve > 10) curve = 10;
if (curve < -10) curve = -10;
curve = (curve * -.1) ; // - invert and scale - this seems more intuitive - postive numbers give more weight to high end on output
curve = pow(10, curve); // convert linear scale into lograthimic exponent for other pow function
// Check for out of range inputValues
if (inputValue < originalMin) {
inputValue = originalMin;
}
if (inputValue > originalMax) {
inputValue = originalMax;
}
// Zero Refference the values
OriginalRange = originalMax - originalMin;
if (newEnd > newBegin){
NewRange = newEnd - newBegin;
}
else
{
NewRange = newBegin - newEnd;
invFlag = 1;
}
zeroRefCurVal = inputValue - originalMin;
normalizedCurVal = zeroRefCurVal / OriginalRange; // normalize to 0 - 1 float
// Check for originalMin > originalMax - the math for all other cases i.e. negative numbers seems to work out fine
if (originalMin > originalMax ) {
return 0;
}
if (invFlag == 0){
rangedValue = (pow(normalizedCurVal, curve) * NewRange) + newBegin;
}
else // invert the ranges
{
rangedValue = newBegin - (pow(normalizedCurVal, curve) * NewRange);
}
return rangedValue;
}
void loop() {
//for mic
uint8_t i;
uint16_t minLvl, maxLvl;
int n, height;
// end mic
// read the pushbutton input pin:
buttonState = digitalRead(buttonPin);
// compare the buttonState to its previous state
if (buttonState != lastButtonState) {
// if the state has changed, increment the counter
if (buttonState == HIGH) {
// if the current state is HIGH then the button
// wend from off to on:
buttonPushCounter++;
Serial.println("on");
Serial.print("number of button pushes: ");
Serial.println(buttonPushCounter);
if(buttonPushCounter==30) {
buttonPushCounter=1;}
}
else {
// if the current state is LOW then the button
// wend from on to off:
Serial.println("off");
}
}
// save the current state as the last state,
//for next time through the loop
lastButtonState = buttonState;
switch (buttonPushCounter){
case 1:
buttonPushCounter==1; {
All2();
break;}
case 2:
buttonPushCounter==2; {
All();
break;}
case 3:
buttonPushCounter==3; {
vu(); // NORMAL
break;}
case 4:
buttonPushCounter==4; {
vu1(); // Centre out
break;}
case 5:
buttonPushCounter==5; {
vu2(); // Centre Inwards
break;}
case 6:
buttonPushCounter==6; {
Vu3(); // Normal Rainbow
break;}
case 7:
buttonPushCounter==7; {
Vu4(); // Centre rainbow
break;}
case 8:
buttonPushCounter==8; {
Vu5(); // Shooting Star
break;}
case 9:
buttonPushCounter==9; {
Vu6(); // Falling star
break;}
case 10:
buttonPushCounter==10; {
vu7(); // Ripple with background
break;}
case 11:
buttonPushCounter==11; {
vu8(); // Shatter
break;}
case 12:
buttonPushCounter==12; {
vu9(); // Pulse
break;}
case 13:
buttonPushCounter==13; {
vu10(); // stream
break;}
case 14:
buttonPushCounter==14; {
vu11(); // Ripple without Background
break;}
case 15:
buttonPushCounter==15; {
vu12(); // Ripple without Background
break;}
case 16:
buttonPushCounter==16; {
vu13(); // Ripple without Background
break;}
case 17:
buttonPushCounter==17; {
rainbow(20);
break;}
case 18:
buttonPushCounter==18; {
ripple();
break;}
case 19:
buttonPushCounter==19; {
ripple2();
break;}
case 20:
buttonPushCounter==20; {
Twinkle();
break;}
case 21:
buttonPushCounter==21; {
pattern2(); // sylon
break;}
case 22:
buttonPushCounter==22; {
pattern3();
break;}
case 23:
buttonPushCounter==23; {
juggle2();
break;}
case 24:
buttonPushCounter==24; {
blur();
break;}
case 25:
buttonPushCounter==25; {
Balls(); //
break;}
case 26:
buttonPushCounter==26; {
Drip(); //
break;}
case 27:
buttonPushCounter==27; {
fireblu();
break;}
case 28:
buttonPushCounter==28; {
fire(); //
break;}
case 29:
buttonPushCounter==29; {
colorWipe(strip.Color(0, 0, 0), 10); // Black
break;}
}
}
void colorWipe(uint32_t c, uint8_t wait) {
for(uint16_t i=0; i<strip.numPixels(); i++) {
strip.setPixelColor(i, c);
strip.show();
if (digitalRead(buttonPin) != lastButtonState) // <------------- add this
return; // <------------ and this
delay(wait);
}}
void vu() {
uint8_t i;
uint16_t minLvl, maxLvl;
int n, height;
n = analogRead(MIC_PIN); // Raw reading from mic
n = abs(n - 512 - DC_OFFSET); // Center on zero
n = (n <= NOISE) ? 0 : (n - NOISE); // Remove noise/hum
lvl = ((lvl * 7) + n) >> 3; // "Dampened" reading (else looks twitchy)
// Calculate bar height based on dynamic min/max levels (fixed point):
height = TOP * (lvl - minLvlAvg) / (long)(maxLvlAvg - minLvlAvg);
if(height < 0L) height = 0; // Clip output
else if(height > TOP) height = TOP;
if(height > peak) peak = height; // Keep 'peak' dot at top
// Color pixels based on rainbow gradient
for(i=0; i<N_PIXELS; i++) {
if(i >= height) strip.setPixelColor(i, 0, 0, 0);
else strip.setPixelColor(i,Wheel(map(i,0,strip.numPixels()-1,30,150)));
}
// Draw peak dot
if(peak > 0 && peak <= N_PIXELS-1) strip.setPixelColor(peak,Wheel(map(peak,0,strip.numPixels()-1,30,150)));
strip.show(); // Update strip
// Every few frames, make the peak pixel drop by 1:
if(++dotCount >= PEAK_FALL) { //fall rate
if(peak > 0) peak--;
dotCount = 0;
}
vol[volCount] = n; // Save sample for dynamic leveling
if(++volCount >= SAMPLES) volCount = 0; // Advance/rollover sample counter
// Get volume range of prior frames
minLvl = maxLvl = vol[0];
for(i=1; i<SAMPLES; i++) {
if(vol[i] < minLvl) minLvl = vol[i];
else if(vol[i] > maxLvl) maxLvl = vol[i];
}
// minLvl and maxLvl indicate the volume range over prior frames, used
// for vertically scaling the output graph (so it looks interesting
// regardless of volume level). If they're too close together though
// (e.g. at very low volume levels) the graph becomes super coarse
// and 'jumpy'...so keep some minimum distance between them (this
// also lets the graph go to zero when no sound is playing):
if((maxLvl - minLvl) < TOP) maxLvl = minLvl + TOP;
minLvlAvg = (minLvlAvg * 63 + minLvl) >> 6; // Dampen min/max levels
maxLvlAvg = (maxLvlAvg * 63 + maxLvl) >> 6; // (fake rolling average)
}
// Input a value 0 to 255 to get a color value.
// The colors are a transition r - g - b - back to r.
uint32_t Wheel(byte WheelPos) {
if(WheelPos < 85) {
return strip.Color(WheelPos * 3, 255 - WheelPos * 3, 0);
} else if(WheelPos < 170) {
WheelPos -= 85;
return strip.Color(255 - WheelPos * 3, 0, WheelPos * 3);
} else {
WheelPos -= 170;
return strip.Color(0, WheelPos * 3, 255 - WheelPos * 3);
}
}
void vu1() {
uint8_t i;
uint16_t minLvl, maxLvl;
int n, height;
n = analogRead(MIC_PIN); // Raw reading from mic
n = abs(n - 512 - DC_OFFSET); // Center on zero
n = (n <= NOISE) ? 0 : (n - NOISE); // Remove noise/hum
lvl = ((lvl * 7) + n) >> 3; // "Dampened" reading (else looks twitchy)
// Calculate bar height based on dynamic min/max levels (fixed point):
height = TOP * (lvl - minLvlAvg) / (long)(maxLvlAvg - minLvlAvg);
if(height < 0L) height = 0; // Clip output
else if(height > TOP) height = TOP;
if(height > peak) peak = height; // Keep 'peak' dot at top
// Color pixels based on rainbow gradient
for(i=0; i<N_PIXELS_HALF; i++) {
if(i >= height) {
strip.setPixelColor(N_PIXELS_HALF-i-1, 0, 0, 0);
strip.setPixelColor(N_PIXELS_HALF+i, 0, 0, 0);
}
else {
uint32_t color = Wheel(map(i,0,N_PIXELS_HALF-1,30,150));
strip.setPixelColor(N_PIXELS_HALF-i-1,color);
strip.setPixelColor(N_PIXELS_HALF+i,color);
}
}
// Draw peak dot
if(peak > 0 && peak <= N_PIXELS_HALF-1) {
uint32_t color = Wheel(map(peak,0,N_PIXELS_HALF-1,30,150));
strip.setPixelColor(N_PIXELS_HALF-peak-1,color);
strip.setPixelColor(N_PIXELS_HALF+peak,color);
}
strip.show(); // Update strip
// Every few frames, make the peak pixel drop by 1:
if(++dotCount >= PEAK_FALL) { //fall rate
if(peak > 0) peak--;
dotCount = 0;
}
vol[volCount] = n; // Save sample for dynamic leveling
if(++volCount >= SAMPLES) volCount = 0; // Advance/rollover sample counter
// Get volume range of prior frames
minLvl = maxLvl = vol[0];
for(i=1; i<SAMPLES; i++) {
if(vol[i] < minLvl) minLvl = vol[i];
else if(vol[i] > maxLvl) maxLvl = vol[i];
}
// minLvl and maxLvl indicate the volume range over prior frames, used
// for vertically scaling the output graph (so it looks interesting
// regardless of volume level). If they're too close together though
// (e.g. at very low volume levels) the graph becomes super coarse
// and 'jumpy'...so keep some minimum distance between them (this
// also lets the graph go to zero when no sound is playing):
if((maxLvl - minLvl) < TOP) maxLvl = minLvl + TOP;
minLvlAvg = (minLvlAvg * 63 + minLvl) >> 6; // Dampen min/max levels
maxLvlAvg = (maxLvlAvg * 63 + maxLvl) >> 6; // (fake rolling average)
}
void vu2()
{
unsigned long startMillis= millis(); // Start of sample window
float peakToPeak = 0; // peak-to-peak level
unsigned int signalMax = 0;
unsigned int signalMin = 1023;
unsigned int c, y;
while (millis() - startMillis < SAMPLE_WINDOW)
{
sample = analogRead(MIC_PIN);
if (sample < 1024)
{
if (sample > signalMax)
{
signalMax = sample;
}
else if (sample < signalMin)
{
signalMin = sample;
}
}
}
peakToPeak = signalMax - signalMin;
// Serial.println(peakToPeak);
for (int i=0;i<=N_PIXELS_HALF-1;i++){
uint32_t color = Wheel(map(i,0,N_PIXELS_HALF-1,30,150));
strip.setPixelColor(N_PIXELS-i,color);
strip.setPixelColor(0+i,color);
}
c = fscale(INPUT_FLOOR, INPUT_CEILING, N_PIXELS_HALF, 0, peakToPeak, 2);
if(c < peak) {
peak = c; // Keep dot on top
dotHangCount = 0; // make the dot hang before falling
}
if (c <= strip.numPixels()) { // Fill partial column with off pixels
drawLine(N_PIXELS_HALF, N_PIXELS_HALF-c, strip.Color(0, 0, 0));
drawLine(N_PIXELS_HALF, N_PIXELS_HALF+c, strip.Color(0, 0, 0));
}
y = N_PIXELS_HALF - peak;
uint32_t color1 = Wheel(map(y,0,N_PIXELS_HALF-1,30,150));
strip.setPixelColor(y-1,color1);
//strip.setPixelColor(y-1,Wheel(map(y,0,N_PIXELS_HALF-1,30,150)));
y = N_PIXELS_HALF + peak;
strip.setPixelColor(y,color1);
//strip.setPixelColor(y+1,Wheel(map(y,0,N_PIXELS_HALF+1,30,150)));
strip.show();
// Frame based peak dot animation
if(dotHangCount > PEAK_HANG) { //Peak pause length
if(++dotCount >= PEAK_FALL2) { //Fall rate
peak++;
dotCount = 0;
}
}
else {
dotHangCount++;
}
}
void Vu3() {
uint8_t i;
uint16_t minLvl, maxLvl;
int n, height;
n = analogRead(MIC_PIN); // Raw reading from mic
n = abs(n - 512 - DC_OFFSET); // Center on zero
n = (n <= NOISE) ? 0 : (n - NOISE); // Remove noise/hum
lvl = ((lvl * 7) + n) >> 3; // "Dampened" reading (else looks twitchy)
// Calculate bar height based on dynamic min/max levels (fixed point):
height = TOP * (lvl - minLvlAvg) / (long)(maxLvlAvg - minLvlAvg);
if (height < 0L) height = 0; // Clip output
else if (height > TOP) height = TOP;
if (height > peak) peak = height; // Keep 'peak' dot at top
greenOffset += SPEED;
blueOffset += SPEED;
if (greenOffset >= 255) greenOffset = 0;
if (blueOffset >= 255) blueOffset = 0;
// Color pixels based on rainbow gradient
for (i = 0; i < N_PIXELS; i++) {
if (i >= height) {
strip.setPixelColor(i, 0, 0, 0);
} else {
strip.setPixelColor(i, Wheel(
map(i, 0, strip.numPixels() - 1, (int)greenOffset, (int)blueOffset)
));
}
}
// Draw peak dot
if(peak > 0 && peak <= N_PIXELS-1) strip.setPixelColor(peak,Wheel(map(peak,0,strip.numPixels()-1,30,150)));
strip.show(); // Update strip
// Every few frames, make the peak pixel drop by 1:
if(++dotCount >= PEAK_FALL) { //fall rate
if(peak > 0) peak--;
dotCount = 0;
}
strip.show(); // Update strip
vol[volCount] = n;
if (++volCount >= SAMPLES) {
volCount = 0;
}
// Get volume range of prior frames
minLvl = maxLvl = vol[0];
for (i = 1; i < SAMPLES; i++) {
if (vol[i] < minLvl) {
minLvl = vol[i];
} else if (vol[i] > maxLvl) {
maxLvl = vol[i];
}
}
// minLvl and maxLvl indicate the volume range over prior frames, used
// for vertically scaling the output graph (so it looks interesting
// regardless of volume level). If they're too close together though
// (e.g. at very low volume levels) the graph becomes super coarse
// and 'jumpy'...so keep some minimum distance between them (this
// also lets the graph go to zero when no sound is playing):
if ((maxLvl - minLvl) < TOP) {
maxLvl = minLvl + TOP;
}
minLvlAvg = (minLvlAvg * 63 + minLvl) >> 6; // Dampen min/max levels
maxLvlAvg = (maxLvlAvg * 63 + maxLvl) >> 6; // (fake rolling average)
}
void Vu4() {
uint8_t i;
uint16_t minLvl, maxLvl;
int n, height;
n = analogRead(MIC_PIN); // Raw reading from mic
n = abs(n - 512 - DC_OFFSET); // Center on zero
n = (n <= NOISE) ? 0 : (n - NOISE); // Remove noise/hum
lvl = ((lvl * 7) + n) >> 3; // "Dampened" reading (else looks twitchy)
// Calculate bar height based on dynamic min/max levels (fixed point):
height = TOP * (lvl - minLvlAvg) / (long)(maxLvlAvg - minLvlAvg);
if(height < 0L) height = 0; // Clip output
else if(height > TOP) height = TOP;
if(height > peak) peak = height; // Keep 'peak' dot at top
greenOffset += SPEED;
blueOffset += SPEED;
if (greenOffset >= 255) greenOffset = 0;
if (blueOffset >= 255) blueOffset = 0;
// Color pixels based on rainbow gradient
for(i=0; i<N_PIXELS_HALF; i++) {
if(i >= height) {
strip.setPixelColor(N_PIXELS_HALF-i-1, 0, 0, 0);
strip.setPixelColor(N_PIXELS_HALF+i, 0, 0, 0);
}
else {
uint32_t color = Wheel(map(i,0,N_PIXELS_HALF-1,(int)greenOffset, (int)blueOffset));
strip.setPixelColor(N_PIXELS_HALF-i-1,color);
strip.setPixelColor(N_PIXELS_HALF+i,color);
}
}
// Draw peak dot
if(peak > 0 && peak <= N_PIXELS_HALF-1) {
uint32_t color = Wheel(map(peak,0,N_PIXELS_HALF-1,30,150));
strip.setPixelColor(N_PIXELS_HALF-peak-1,color);
strip.setPixelColor(N_PIXELS_HALF+peak,color);
}
strip.show(); // Update strip
// Every few frames, make the peak pixel drop by 1:
if(++dotCount >= PEAK_FALL) { //fall rate
if(peak > 0) peak--;
dotCount = 0;
}
vol[volCount] = n; // Save sample for dynamic leveling
if(++volCount >= SAMPLES) volCount = 0; // Advance/rollover sample counter
// Get volume range of prior frames
minLvl = maxLvl = vol[0];
for(i=1; i<SAMPLES; i++) {
if(vol[i] < minLvl) minLvl = vol[i];
else if(vol[i] > maxLvl) maxLvl = vol[i];
}
// minLvl and maxLvl indicate the volume range over prior frames, used
// for vertically scaling the output graph (so it looks interesting
// regardless of volume level). If they're too close together though
// (e.g. at very low volume levels) the graph becomes super coarse
// and 'jumpy'...so keep some minimum distance between them (this
// also lets the graph go to zero when no sound is playing):
if((maxLvl - minLvl) < TOP) maxLvl = minLvl + TOP;
minLvlAvg = (minLvlAvg * 63 + minLvl) >> 6; // Dampen min/max levels
maxLvlAvg = (maxLvlAvg * 63 + maxLvl) >> 6; // (fake rolling average)
}
void Vu5()
{
uint8_t i;
uint16_t minLvl, maxLvl;
int n, height;
n = analogRead(MIC_PIN); // Raw reading from mic
n = abs(n - 512 - DC_OFFSET); // Center on zero
n = (n <= NOISE) ? 0 : (n - NOISE); // Remove noise/hum
lvl = ((lvl * 7) + n) >> 3; // "Dampened" reading (else looks twitchy)
// Calculate bar height based on dynamic min/max levels (fixed point):
height = TOP2 * (lvl - minLvlAvg) / (long)(maxLvlAvg - minLvlAvg);
if(height < 0L) height = 0; // Clip output
else if(height > TOP2) height = TOP2;
if(height > peak) peak = height; // Keep 'peak' dot at top
#ifdef CENTERED
// Color pixels based on rainbow gradient
for(i=0; i<(N_PIXELS/2); i++) {
if(((N_PIXELS/2)+i) >= height)
{
strip.setPixelColor(((N_PIXELS/2) + i), 0, 0, 0);
strip.setPixelColor(((N_PIXELS/2) - i), 0, 0, 0);
}
else
{
strip.setPixelColor(((N_PIXELS/2) + i),Wheel(map(((N_PIXELS/2) + i),0,strip.numPixels()-1,30,150)));
strip.setPixelColor(((N_PIXELS/2) - i),Wheel(map(((N_PIXELS/2) - i),0,strip.numPixels()-1,30,150)));
}
}
// Draw peak dot
if(peak > 0 && peak <= LAST_PIXEL_OFFSET)
{
strip.setPixelColor(((N_PIXELS/2) + peak),255,255,255); // (peak,Wheel(map(peak,0,strip.numPixels()-1,30,150)));
strip.setPixelColor(((N_PIXELS/2) - peak),255,255,255); // (peak,Wheel(map(peak,0,strip.numPixels()-1,30,150)));
}
#else
// Color pixels based on rainbow gradient
for(i=0; i<N_PIXELS; i++)
{
if(i >= height)
{
strip.setPixelColor(i, 0, 0, 0);
}
else
{
strip.setPixelColor(i,Wheel(map(i,0,strip.numPixels()-1,30,150)));
}
}
// Draw peak dot
if(peak > 0 && peak <= LAST_PIXEL_OFFSET)
{
strip.setPixelColor(peak,255,255,255); // (peak,Wheel(map(peak,0,strip.numPixels()-1,30,150)));
}
#endif
// Every few frames, make the peak pixel drop by 1:
if (millis() - lastTime >= PEAK_FALL_MILLIS)
{
lastTime = millis();
strip.show(); // Update strip
//fall rate
if(peak > 0) peak--;
}
vol[volCount] = n; // Save sample for dynamic leveling
if(++volCount >= SAMPLES) volCount = 0; // Advance/rollover sample counter
// Get volume range of prior frames
minLvl = maxLvl = vol[0];
for(i=1; i<SAMPLES; i++)
{
if(vol[i] < minLvl) minLvl = vol[i];
else if(vol[i] > maxLvl) maxLvl = vol[i];
}
// minLvl and maxLvl indicate the volume range over prior frames, used
// for vertically scaling the output graph (so it looks interesting
// regardless of volume level). If they're too close together though
// (e.g. at very low volume levels) the graph becomes super coarse
// and 'jumpy'...so keep some minimum distance between them (this
// also lets the graph go to zero when no sound is playing):
if((maxLvl - minLvl) < TOP2) maxLvl = minLvl + TOP2;
minLvlAvg = (minLvlAvg * 63 + minLvl) >> 6; // Dampen min/max levels
maxLvlAvg = (maxLvlAvg * 63 + maxLvl) >> 6; // (fake rolling average)
}
void Vu6()
{
uint8_t i;
uint16_t minLvl, maxLvl;
int n, height;
n = analogRead(MIC_PIN); // Raw reading from mic
n = abs(n - 512 - DC_OFFSET); // Center on zero
n = (n <= NOISE) ? 0 : (n - NOISE); // Remove noise/hum
lvl = ((lvl * 7) + n) >> 3; // "Dampened" reading (else looks twitchy)
// Calculate bar height based on dynamic min/max levels (fixed point):
height = TOP2 * (lvl - minLvlAvg) / (long)(maxLvlAvg - minLvlAvg);
if(height < 0L) height = 0; // Clip output
else if(height > TOP2) height = TOP2;
if(height > peak) peak = height; // Keep 'peak' dot at top
#ifdef CENTERED
// Draw peak dot
if(peak > 0 && peak <= LAST_PIXEL_OFFSET)
{
strip.setPixelColor(((N_PIXELS/2) + peak),255,255,255); // (peak,Wheel(map(peak,0,strip.numPixels()-1,30,150)));
strip.setPixelColor(((N_PIXELS/2) - peak),255,255,255); // (peak,Wheel(map(peak,0,strip.numPixels()-1,30,150)));
}
#else
// Color pixels based on rainbow gradient
for(i=0; i<N_PIXELS; i++)
{
if(i >= height)
{
strip.setPixelColor(i, 0, 0, 0);
}
else
{
}
}
// Draw peak dot
if(peak > 0 && peak <= LAST_PIXEL_OFFSET)
{
...
This file has been truncated, please download it to see its full contents.
/ CODE CAN BE DLOADED HERE, https://drive.google.com/open?id=1U1mUL05USr5QgTmRLqZ1IiEysXvok8yt
Comments