Alex Tejada
Published

AI Navigation/Detection System for the blind

Head-mounted system to help navigate the blind in a complex environment.

211
AI Navigation/Detection System for the blind

Things used in this project

Hardware components

USB Camera (120 FOV)
×1
PCA9685 8-Channel 8W 12V FET Driver Proportional Valve Controller with I2C Interface
National Control Devices PCA9685 8-Channel 8W 12V FET Driver Proportional Valve Controller with I2C Interface
×1
Driver Board ULN2003A
×1
NVIDIA Jetson Nano Developer Kit
NVIDIA Jetson Nano Developer Kit
×1
USB WiFi
×1
Power Bank
×1
Inertial Measurement Unit (IMU) (6 deg of freedom)
Inertial Measurement Unit (IMU) (6 deg of freedom)
×1
Chassis Jetson Nano
×1
Head Magnifying Glass
×1
Adafruit Vibrating Motor Mini Disk
×1

Hand tools and fabrication machines

Jetson Nano Development Kit
Pico Voice

Story

Read more

Schematics

Functional Description

PDF

Code

Haptic Matrix Main

Python
Main Process that executes AI networks and State Machine Controller
# V15A Sigmoid function for distance activation 01-08-24
# V16A Calibration dial
# V16B USB Serial input
# V17A Calibartion file stor in state [2]Calibration
# V18A OPen Serial with exeption to start a serail thread or open a file
# V18D Included Nav Activation external Dial dials[2]/10
# V19A Sigmoid function with slope and mode control+quantized function
import serial
import socket
import threading
import time
from statemachine import StateMachine, State


import i2cdev
import numpy as np

import sys
import argparse
import jetson.utils

from jetson_inference import detectNet
from jetson_inference import depthNet


# from jetson_utils import videoSource, videoOutput, logUsage, cudaOverlay, cudaDeviceSynchronize
from depthnet_utils import depthBuffers
from jetson_utils import videoSource, videoOutput, logUsage, cudaOverlay, cudaImage, cudaConvertColor, cudaAllocMapped, cudaFromNumpy, cudaImage, cudaToNumpy, cudaFont

# Open Serial POrt for Calibration dials
# M8p = serial.Serial('/dev/ttyACM0', 115200, timeout=1)

    

# Controller shared variables and Thread Lock
shared_variable = 0
variable_lock = threading.Lock()

# Init Bisplay (I2C)
pwm=i2cdev.I2C(0x40,1) # (PCA9685 address,I2C bus)

# Reset PWM
pwm.write(bytes([0xFA, 0]))     # zero all pin
pwm.write(bytes([0xFB, 0]))     # zero all pin
pwm.write(bytes([0xFC, 0]))     # zero all pin
pwm.write(bytes([0xFD, 0]))     # zero all pin
pwm.write(bytes([0x01, 0x04]))  # The 16 LEDn outputs are configured with a totem pole structure.
pwm.write(bytes([0x00, 0x01]))  #PCA9685 responds to LED All Call I2C-bus address
time.sleep(0.01)  # wait for oscillator

'''
Set the PWM frequency to the provided value in hertz.
The maximum PWM frequency is 1526 Hz if the PRE_SCALE register is set "0x03h".
The minimum PWM frequency is 24 Hz if the PRE_SCALE register is set "0xFFh".
he PRE_SCALE register can only be set when the SLEEP bit of MODE1 register is set to logic 1.
'''

# Program to set the Duty cycle and frequency of PWM.
freq_hz=1000 # Frequency of PWM 
freq_hz=freq_hz*0.9 #correction
prescale = int(np.floor(25000000.0/(4096.0*float(freq_hz))-1))    # datasheet equation
print("prescale = " , prescale )
pwm.write(bytes([0x00, 0x10]))
time.sleep(0.01)
pwm.write(bytes([0xFE, prescale]))
pwm.write(bytes([0x00, 0x80]))
time.sleep(0.01)
pwm.write(bytes([0x00, 0x00]))
time.sleep(0.01)
pwm.write(bytes([0x01, 0x04]))
time.sleep(0.01)

# Program to set the PWM for the channel.
def set_pwm(channel, value):
  x=min(4095,value)
  x=max(0,x)
  """Sets a single PWM channel."""
  LED0_ON_L          = 0x06
  LED0_ON_H          = 0x07
  LED0_OFF_L         = 0x08
  LED0_OFF_H         = 0x09
  pwm.write(bytes([(LED0_ON_L+4*channel), 0]))
  pwm.write(bytes([(LED0_ON_H+4*channel), 0]))
  pwm.write(bytes([(LED0_OFF_L+4*channel), (x & 0xFF)]))
  pwm.write(bytes([(LED0_OFF_H+4*channel), (x >> 8)]))
  time.sleep(0.1)



# parse the command line
parser = argparse.ArgumentParser(description="Locate objects in a live camera stream using an object detection DNN.", 
                                 formatter_class=argparse.RawTextHelpFormatter, 
                                 epilog=detectNet.Usage() + videoSource.Usage() + videoOutput.Usage() + logUsage())

parser.add_argument("input_URI", type=str, default="", nargs='?', help="URI of the input stream")
parser.add_argument("output_URI", type=str, default="", nargs='?', help="URI of the output stream")
parser.add_argument("--network", type=str, default="ssd-mobilenet-v2", help="pre-trained model to load (see below for options)")
parser.add_argument("--overlay", type=str, default="box,labels,conf", help="detection overlay flags (e.g. --overlay=box,labels,conf)\nvalid combinations are:  'box', 'labels', 'conf', 'none'")
parser.add_argument("--threshold", type=float, default=0.5, help="minimum detection threshold to use") 

parserd = argparse.ArgumentParser(description="Mono depth estimation on a video/image stream using depthNet DNN.", 
                                 formatter_class=argparse.RawTextHelpFormatter, 
                                 epilog=depthNet.Usage() + videoSource.Usage() + videoOutput.Usage() + logUsage())

parserd.add_argument("input_URI", type=str, default="", nargs='?', help="URI of the input stream")
parserd.add_argument("output_URI", type=str, default="", nargs='?', help="URI of the output stream")
parserd.add_argument("--network", type=str, default="fcn-mobilenet", help="pre-trained model to load, see below for options")
parserd.add_argument("--visualize", type=str, default="input,depth", help="visualization options (can be 'input' 'depth' 'input,depth'")
parserd.add_argument("--depth-size", type=float, default=1.0, help="scales the size of the depth map visualization, as a percentage of the input size (default is 1.0)")
parserd.add_argument("--filter-mode", type=str, default="linear", choices=["point", "linear"], help="filtering mode used during visualization, options are:\n  'point' or 'linear' (default: 'linear')")
parserd.add_argument("--colormap", type=str, default="viridis-inverted", help="colormap to use for visualization (default is 'viridis-inverted')",
                                  choices=["inferno", "inferno-inverted", "magma", "magma-inverted", "parula", "parula-inverted", 
                                           "plasma", "plasma-inverted", "turbo", "turbo-inverted", "viridis", "viridis-inverted"])

# Initialize display type and parse arguments
is_headless = ["--headless"] if sys.argv[0].find('console.py') != -1 else [""]

try:
	args = parser.parse_known_args()[0]
except:
	print("")
	parser.print_help()
	sys.exit(0)
	
try:
	argsd = parserd.parse_known_args()[0]
except:
	print("")
	parserd.print_help()
	sys.exit(0)   
        
# convert colorspace
def convert_color(img, output_format):
    converted_img = cudaAllocMapped(
        width=img.width, height=img.height, format=output_format)
    cudaConvertColor(img, converted_img)
    return converted_img

# Text definition
font = jetson.utils.cudaFont( size=20 )        
# Generae Gaussian convolution filter
width, height=640, 360

# Develope filter regions
rows_per_region = width // 3
cols_per_region = height // 2

# Build array
x = np.linspace(0, width-1, width)
y = np.linspace(0, height-1, height)
z = np.linspace(0,2,3)

X, Y, Z = np.meshgrid(x, y, z)

# Define sigmas per axis
sigma_x=30
sigma_y=25

# Define Bar Arrangement
BarX=100
BarY=150
BarW=50
BarG=180
BarBX=120
BarBY=150

#define Normalized gassian function
def gaussian(x, y, z, mean, sigma_x, sigma_y):
    exponent=-0.5 * ((x-mean[0])**2 / sigma_x**2 +(y - mean[1])**2 / sigma_y**2)
    unormalized = np.exp(exponent)
    return 254.0*(unormalized / np.max(unormalized))

# Bin Calculation
# regions = [(0, 210, 0, 180),(0, 210, 180, 360),(210, 420, 0, 180),(210, 420, 180, 360), (420, 630, 0, 180), (420, 630, 180, 360)]
regions = [(0, 180, 0, 210),(0, 180, 210, 420),(0, 180, 420, 630),(180, 360, 0 , 210), (180, 360, 210, 420), (180, 360, 420, 630)]
num_bins = 5

# Define gaussian filter	       
Gauss_filter_cuda = cudaImage(width=640, height=360, format='rgb32f')
Gauss_filter_nparray = np.zeros(Gauss_filter_cuda.shape, np.float32)

# Define depth mask	       
depth_mask_cuda = cudaImage(width=640, height=360, format='rgb32f')
Depth_mask640x360_array = np.zeros((360,640), np.float32)
Depth_mask640x360_array_1 = np.ones((360,640), np.float32)
	       
# Mask = Mask*128
# Mask = np.zeros((360,640,3))

# create image filter
# num_rectangles = 6
rows = 3
cols = 2
diameter = 20
# percentage_smaller = 90


rect_width = 640 // rows# Rows
rect_height = 360 // cols # Cols



# create image filter
GFilter640x480_array = (gaussian(X , Y , Z, [width/6, height/4], sigma_x, sigma_y) + 
         gaussian(X , Y , Z, [width/2, height/4], sigma_x, sigma_y) +
         gaussian(X , Y , Z, [5*width/6, height/4], sigma_x, sigma_y) +
         gaussian(X , Y , Z, [width/6, 3*height/4], sigma_x, sigma_y) +
         gaussian(X , Y , Z, [width/2, 3*height/4], sigma_x, sigma_y) +
         gaussian(X , Y , Z, [5*width/6, 3*height/4], sigma_x, sigma_y))



# convert array to Image and map to rgb8 color space 
GFilter640x480_cuda = cudaFromNumpy(GFilter640x480_array)
GFilter640x480_cuda_rgb8 = convert_color(GFilter640x480_cuda, "rgb8")

# create video sources and outputs
input = videoSource(args.input_URI, argv=sys.argv)
output = videoOutput(args.output_URI, argv=sys.argv+is_headless)
	
# load the object detection network
net = detectNet(args.network, sys.argv, args.threshold)

# Load depth network and set to obtain raw depth data
netd = depthNet(argsd.network, sys.argv)
depth_field = netd.GetDepthField()
Depth224x224_raw_array = jetson.utils.cudaToNumpy(depth_field)

buffers = depthBuffers(argsd)
# note: to hard-code the paths to load a model, the following API can be used:
#
# net = detectNet(model="model/ssd-mobilenet.onnx", labels="model/labels.txt", 
#                 input_blob="input_0", output_cvg="scores", output_bbox="boxes", 
#                 threshold=args.threshold)

# IP Socket Server running in a Thread
class MySocketServer:
    def __init__(self, host, port):
        self.server_socket=socket.socket(socket.AF_INET, socket.SOCK_STREAM)
        self.server_socket.bind((host, port))
        self.server_socket.listen(1)
        self.server_socket, _ = self.server_socket.accept()

    def receive_byte(self):
        data = self.server_socket.recv(1).decode()
        # print(data)
        return data
    
    def close(self):
        # self.client_socket.close()
        self.server_socket.close()
        
# State machine server
class MyStateMachine(StateMachine):
    # State 0, Depth Mode(Default)
    state_0 = State('0', initial=True)
    # State 1, Object Detection Mode
    state_1 = State('1')
    # State 2, Calibration Mode
    state_2 = State('2')    

    # Legal Transitions
    #   From 0 to 1, (From Navigate Mode to Detection Mode)
    to_state_1 = state_0.to(state_1)

    #   From 2 to 0, (From Detection Mode to Depth Mode)
    to_state_0 = state_2.to(state_0)    

    # From State 1 to State 0
    to_state_10 = state_1.to(state_0)

    #   From 0 to 2, (From Navigate to Calibration)
    to_state_02 = state_0.to(state_2)
     #   From 1 to 2, (From Detection Mode to Calibration)
    to_state_2 = state_1.to(state_2)  

    #   From 2 to 0, (From Calibration back to Navigate)    



# State transition controller
def state_transition(server,state_machine):
    global Detection
    while True:
        # Wait for socket byte command {0}Navigate,({1}Person,{2}Table),{3}Calibrate    
        Command = server.server_socket.recv(1).decode()
        # Debug print
        print(Command)

        # If state is [1]Detection and a {0}command to [0]Navigate is requested,  go ahead and do it
        if (Command == '0') & state_machine.is_state_1:
            state_machine.to_state_10()
            # Navigate does not requiere object label (Does not apply)
            Detection=-1   
        # if state is [1]Detection with a {1}command(person) then just change Detection Label=1
        elif (Command == '1') & state_machine.is_state_1: 
            # No need to transtion
            Detection=1 #(Person Label Index)
        # if state is [1]Detection with a {2}command(table)) then just change Detection Label=67    
        elif (Command == '2') & state_machine.is_state_1: 
            # No Need to transition
            Detection=67 #(Table label Index) 
        # if state is [0]Navigate with a new with label(1) then transtion to detection and change Detection Label                        
        elif (Command == '1') & state_machine.is_state_0: 
            state_machine.to_state_1()
            Detection=1 #(Person Label Index)
        # if state is [0]Navigate with a new with label(1) then transtion to detection and change Detection Label
        elif (Command == '2') & state_machine.is_state_0: 
            state_machine.to_state_1()
            Detection=67 #(Table label Index)----------------------------------------------------  
        # if state is [0]Navigate and {3}Calibration is requested goto state [2]Calibration, no label requiered    
        elif (Command == '3') & state_machine.is_state_0: 
            state_machine.to_state_02()
            Detection=-1 #Not used for calibration
        # if state is [1]Detection and {3}Calibration is requested goto state [2]Calibration, no label requiered 
        elif (Command == '3') & state_machine.is_state_1: 
            state_machine.to_state_2()
            Detection=-1 #No Label     
        # if state is [0]Calibration and {0}Navigation is requested goto state [0]Navigation, no label requiered    
        elif (Command == '0') & state_machine.is_state_2: 
            state_machine.to_state_0()
            Detection=-1 #Not used for calibration
                            

# Bisplay Thread, changes bibration level to all 6 Bixels 
#[A][B][C]
#[C][D][E]

def SerialRead():
    global dials
    global M8p
    while True:
        data = M8p.readline().decode().strip()
        numbers_str=data.split('\t')
        dials=[254-int(num) for num in numbers_str]
       

def BivXplayer():
    global BivXelA, BivXelB, BivXelC, BivXelD, BivXelE, BivXelF
    while True:
        #with variable_lock:
             set_pwm(0,BivXelA) #BivXel1
             set_pwm(1,BivXelB)#BivXel2
             set_pwm(2,BivXelC) #BivXel3
             set_pwm(11,BivXelD) #BivXel4
             set_pwm(10,BivXelE) #BivXel5
             set_pwm(9,BivXelF) #BivXel6
             set_pwm(7,BivXelB) #test port
             time.sleep(0.05)
             #
             

             # print(BivXelA, BivXelB, BivXelC, BivXelD, BivXelE, BivXelF)
        #time.sleep(0.5)

# Sigmoid
# Colculate Distance activation based on the sigmoid function and inverting the result.  This is multiplied by scale factor
# its result will send a Vibration value to ecach BivXel as a function inversly proportional to the Distance
# The closer the object th highr the vibration, but activated only after a threshold is passed
# The 'mode' boolean controls positive or negative activation
# The 'slope' controls how fas the activation respondes as a change in depth
def SigmoidF(x, ScaleV, ActivationV, slope, mode):
    if mode:
         return ScaleV*(1.0 - 1.0/(1.0 +np.exp(- slope*(x-ActivationV))))   
    else:
         return ScaleV*(1.0/(1.0 +np.exp(- slope*(x-ActivationV))))    
    
# Quantizased steps
# Returns  a speciified number of steps that steps the output ti a predtermined number if vaules
def quantize_output(y, segments, scale):
     step_size= scale/segments
     return np.round(y/step_size) * step_size
        

def main():
    global BivXelA, BivXelB, BivXelC, BivXelD, BivXelE, BivXelF

    BivXelA, BivXelB, BivXelC, BivXelD, BivXelE, BivXelF = 0, 0, 0, 0, 0, 0

    global Detection
    Detection=-1

    global dials 
    dials = [0,0,0,0,0,0,0,0]

    # Check if USB Serila Calibration Dials are present, if yes open port and start thread
    # if not just read calibration file from disk


    BivXplayer_thread = threading.Thread(target=BivXplayer)
    BivXplayer_thread.start()
    print('Print Thread Stared')

    print("Let the games begin...")

    host = socket.gethostname()  # as both code is running on same pc
    port = 12453  # socket server port number   ********************************************************************************

    server = MySocketServer(host,port)
    print('Socket Sever Stared')  

    state_machine = MyStateMachine()
    print('State Machine Started')

    transition_thread = threading.Thread(target=state_transition, args=(server, state_machine))
    transition_thread.start()
    print('Transition Thread Started') 
    
    global M8p
    # Start Serail Thread if port found, otherwise read file
    try:
        M8p = serial.Serial('/dev/ttyACM0', 115200, timeout=1)
        print('M8P Calibration dials found')
        Cal='M8P'       
        serial_thread = threading.Thread(target=SerialRead)
        serial_thread.start()
        print('Serial Thread Started')       

    except serial.SerialException:
        print("M8P not found, using stored configuration file")
        dials=np.load('CALIBRATION.npy')
        Cal='CALIBRATION.npy'

    CurrState='Null'
    # Main Loop, 
    try:
        while True:


            # discrimanate between two states(Depth[0] and Detection[1])
            # MonoDepth
            if state_machine.is_state_0:
                # State-0 (Navigation)
                CurrState='Nav'
                # Get Image from camera GFilter640x480_cuda [Camera1920x720_cuda]
                Camera = input.Capture()

                #Allocate buffers from Camera info
                buffers.Alloc(Camera.shape, Camera.format)

                # Create buffer for resized image, same format
                Camera640x360_cuda_rgb8 = jetson.utils.cudaAllocMapped(width=640,height=360,format=Camera.format)

                # Resize camera img to resized_img
                jetson.utils.cudaResize(Camera, Camera640x360_cuda_rgb8)

                # Clear Depth Mask Array with 0.0s, only let detpth values through if object detected
                Depth_mask640x360_array = np.zeros(Camera640x360_cuda_rgb8.shape, np.float32)                

                # Process  depth from image without overlays 
                netd.Process(Camera, buffers.depth, argsd.colormap, argsd.filter_mode)

                # Create Display Buffers
                Bivxel640x360_cuda_rgb8 = jetson.utils.cudaAllocMapped(width=640,height=360,format=Camera.format)
                Depth640x360_raw_cuda_rgb8 = jetson.utils.cudaAllocMapped(width=640,height=360,format=Camera.format)
                Detect640x360_cuda_rgb8 = jetson.utils.cudaAllocMapped(width=640,height=360,format=Camera.format)
                Bar640x360_cuda_rgb8 = jetson.utils.cudaAllocMapped(width=640,height=360,format=Camera.format)
                Diag640x360_cuda_rgb8 = jetson.utils.cudaAllocMapped(width=640,height=360,format=Camera.format)
             

                # resize camera detections+object overlays into buffer
                jetson.utils.cudaResize(Camera, Detect640x360_cuda_rgb8)                 

                       
                # Resize mono depth to 640 by 360
                Depth224x224_raw_cuda = cudaFromNumpy(50*Depth224x224_raw_array)
                Depth224x224_raw_cuda_rgb8 = convert_color(Depth224x224_raw_cuda, "rgb8") 
                jetson.utils.cudaResize(Depth224x224_raw_cuda_rgb8, Depth640x360_raw_cuda_rgb8)   


                # Extract numpy array from de resized depth image   
                Depth640x360_raw_array = cudaToNumpy(Depth640x360_raw_cuda_rgb8)

                # Get Gaussion filtered depth,  Multiply Resized Depth numpy array times Numpy GFilter and ccolor convert to RGB8
                DepthxGFilter640x360_array = np.multiply( Depth640x360_raw_array/254 ,GFilter640x480_array)  
                DepthxGFilter640x36_cuda = cudaFromNumpy(DepthxGFilter640x360_array)  
                DepthxGFilter640x36_cuda_rgb8 = convert_color(DepthxGFilter640x36_cuda, "rgb8")
                                
                # Depth is not masked in navigation
                DepthxDmask640x360_array = Depth640x360_raw_array 
                DepthxDmask640x360_cuda = cudaFromNumpy(DepthxDmask640x360_array) # Convert arra to cuda
                DepthxDmask640x360_cuda_rgb8 = convert_color(DepthxDmask640x360_cuda, "rgb8") # Map to color space

                # Calculate depth image average after Gaussin filter applied
                averages = np.zeros(6)
                for i in range(6):
                    Dregion=DepthxGFilter640x360_array[regions[i][0]:regions[i][1]+1,regions[i][2]:regions[i][3]+1 ]
                    averages[i]= np.mean(Dregion)

                # Distance corection factor (Feet to meters 3.03???)
                Feet2Meter=1.0 #0.1525

                # Display numeric averages in [E] sector (VibXel)
                font.OverlayText(Bar640x360_cuda_rgb8, 640, 360, str(int(averages[0]*Feet2Meter)), 110, 160, (150, 150, 150), (0, 0, 0))
                font.OverlayText(Bar640x360_cuda_rgb8, 640, 360, str(int(averages[1]*Feet2Meter)), 290, 160, (150, 150, 150), (0, 0, 0))
                font.OverlayText(Bar640x360_cuda_rgb8, 640, 360, str(int(averages[2]*Feet2Meter)), 470, 160, (150, 150, 150), (0, 0, 0))
                font.OverlayText(Bar640x360_cuda_rgb8, 640, 360, str(int(averages[3]*Feet2Meter)), 110, 310, (150, 150, 150), (0, 0, 0))
                font.OverlayText(Bar640x360_cuda_rgb8, 640, 360, str(int(averages[4]*Feet2Meter)), 290, 310, (150, 150, 150), (0, 0, 0))
                font.OverlayText(Bar640x360_cuda_rgb8, 640, 360, str(int(averages[5]*Feet2Meter)), 470, 310, (150, 150, 150), (0, 0, 0))                


                # Draw Bars on screen that represnt the average distance per region
                BarDistScale=3
                for j in range(3):
                        jetson.utils.cudaDrawRect(Bar640x360_cuda_rgb8, (BarX+BarG*j,BarY-int(averages[j])*BarDistScale, BarX+BarG*j+BarW,BarY+1), (127,255,200,200)) #(0, 0, 210, 180)
                for j in range(3,6):
                        jetson.utils.cudaDrawRect(Bar640x360_cuda_rgb8, (BarX+BarG*(j-3),BarBY+BarY-int(averages[j])*BarDistScale, BarX+BarG*(j-3)+BarW,BarBY+BarY+1), (127,255,200,200)) #(0, 0, 210, 180)               

                # Calculate inverse  BivXel using sigmoid distance activation function(Signal user that an object is near, the closer the obhect the higher the bivration)
                Sigmoid=np.zeros(0)

                # define Activation parameters
                ScaleNav = dials[0]*8 # 4096 is max valu, set to 1/2 for testing purposes
                ScaleDet = dials[4]*8
                # Nav Activation Distance
                ActivationNav = dials[1]/10 # (Feet/Meters)Distance where activation vale will activate
                ActivationDet = dials[5]/10
                # Sigmoid Slope                
                SlopeNav = dials[2]/10
                SlopeDet = dials[6]/10
                # motor bias         
                BiasNav = dials[3]*8
                BiasDet = dials[7]*8                

                # Define BivXel calibration parameter, calibrates each individual vibrator to "feel" the same mechanicaly/physiologically
                BivXelCal = np.ones(6)
                BivXelCal[0]=1.0
                BivXelCal[1]=1.0
                BivXelCal[2]=1.0
                BivXelCal[3]=1.0
                BivXelCal[4]=1.0
                BivXelCal[5]=1.0

                # Calculate activation
                Sigmoid = SigmoidF(averages,ScaleNav,ActivationNav,SlopeNav,True)  # 
                # Sigmoid = averages
                # Scale each VibXel accordingly
                SigmoidCal = np.multiply(Sigmoid, BivXelCal)                

                # Dislay  Bar bibxels wich is inverse if the distance, Bar value has a proprtional constant of 3 for space limitation
                BarBivScale=2
                for j in range(3):
                        jetson.utils.cudaDrawRect(Bivxel640x360_cuda_rgb8, (BarX+BarG*j,BarY-int(SigmoidCal[j]*BarBivScale), BarX+BarG*j+BarW+1,BarY+1), (127,127,250,200)) #(0, 0, 210, 180)
                for j in range(3,6):
                        jetson.utils.cudaDrawRect(Bivxel640x360_cuda_rgb8, (BarX+BarG*(j-3),BarBY+BarY-int(SigmoidCal[j]*BarBivScale), BarX+BarG*(j-3)+BarW+1,BarBY+BarY+2), (127,127,250,200))

                #  Display on BivXel screen 
                #with variable_lock:
                BivXelA= int(SigmoidCal[0]) + BiasNav
                BivXelB= int(SigmoidCal[1]) + BiasNav
                BivXelC= int(SigmoidCal[2]) + BiasNav
                BivXelD= int(SigmoidCal[3]) + BiasNav
                BivXelE= int(SigmoidCal[4]) + BiasNav
                BivXelF= int(SigmoidCal[5]) + BiasNav

                # Display VibXel Text , window [E]
                font.OverlayText(Bivxel640x360_cuda_rgb8, 640, 360, str(BivXelA), 110, 160, (150, 0, 150), (0, 0, 0))
                font.OverlayText(Bivxel640x360_cuda_rgb8, 640, 360, str(BivXelB), 290, 160, (150, 0, 150), (0, 0, 0))
                font.OverlayText(Bivxel640x360_cuda_rgb8, 640, 360, str(BivXelC), 470, 160, (150, 0, 150), (0, 0, 0))
                font.OverlayText(Bivxel640x360_cuda_rgb8, 640, 360, str(BivXelD), 110, 310, (150, 0, 150), (0, 0, 0))
                font.OverlayText(Bivxel640x360_cuda_rgb8, 640, 360, str(BivXelE), 290, 310, (150, 0, 150), (0, 0, 0))
                font.OverlayText(Bivxel640x360_cuda_rgb8, 640, 360, str(BivXelF), 470, 310, (150, 0, 150), (0, 0, 0))

                # Calibartion Text in Diagnostics window [D]
                array=np.array(dials)
                YL1=100
                YL2=200
                YL3=300
                X0=150
                XG=140
                T0=50
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, 'Nav Scale:', T0, YL1, (150, 150, 150), (0, 0, 0))
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, str(ScaleNav), X0, YL1, (0, 150, 0), (0, 0, 0))
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, 'Nav Activ:', T0+XG, YL1, (150, 150, 150), (0, 0, 0))
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, str(ActivationNav), X0+XG, YL1, (0, 150, 0), (0, 0, 0))
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, 'Nav Slope:', T0+2*XG, YL1, (150, 150, 150), (0, 0, 0))                
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, str(SlopeNav), X0+2*XG, YL1, (0, 150, 0), (0, 0, 0))
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, ' Nav Bias:', T0+3*XG, YL1, (150, 150, 150), (0, 0, 0))
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, str(BiasNav), X0+3*XG, YL1, (0, 150, 0), (0, 0, 0))
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, 'Det Scale:', T0, YL2, (150, 150, 150), (0, 0, 0))
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, str(ScaleDet), X0, YL2, (0, 150, 0), (0, 0, 0))
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, 'Det Activ:', T0+XG, YL2, (150, 150, 150), (0, 0, 0))
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, str(ActivationDet), X0+XG, YL2, (0, 150, 0), (0, 0, 0))
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, 'Det Slope:', T0+2*XG, YL2, (150, 150, 150), (0, 0, 0)) 
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, str(SlopeDet), X0+2*XG, YL2, (0, 150, 0), (0, 0, 0))
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, ' Det Bias:', T0+3*XG, YL2, (150, 150, 150), (0, 0, 0))
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, str(BiasDet), X0+3*XG, YL2, (0, 150, 0), (0, 0, 0))  

                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, 'State Num:', T0, YL3, (150, 150, 150), (0, 0, 0))
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, CurrState, X0, YL3, (0, 150, 0), (0, 0, 0))                                   
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, 'Calibrat :', T0+XG, YL3, (150, 150, 150), (0, 0, 0))
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, Cal, X0+XG, YL3, (0, 150, 0), (0, 0, 0))
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, '   Object:', T0+3*XG, YL3, (150, 150, 150), (0, 0, 0))                
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, str(Detection), X0+3*XG, YL3, (0, 150, 0), (0, 0, 0))                

                # Display Arrangement
                #  [A][B][C]
                #  [D][E][F]
                #
                # Display images in overlay                        
                # [A] Image + Detection overlay
                cudaOverlay(Detect640x360_cuda_rgb8, buffers.composite, 0, 0) # (1,1) Camera and Detection
                # [B] Depth * DMask(Function of state, S0>Mask=1.0[Pass all], S1>Mask as function of tection[Pass detected detpth ony])
                cudaOverlay(DepthxDmask640x360_cuda_rgb8, buffers.composite, 640, 0) # (1,2) Depth Mask  resized_bisplay
                # [C] Gaussion Filter Mapp Reference
                cudaOverlay(DepthxGFilter640x36_cuda_rgb8, buffers.composite, 1280,0) #(1,3) Gaussian Filter
                # [D] Depth*GMask*DMask (DMask fubction of state)
                cudaOverlay(Diag640x360_cuda_rgb8 , buffers.composite,0, 360) # [2,1] Diagnostics/Status
                # [E] Bibxels, 
                cudaOverlay(Bivxel640x360_cuda_rgb8, buffers.composite, 640, 360) # [2,2]  9Circles)
                # [F] Depth Bars
                cudaOverlay(Bar640x360_cuda_rgb8, buffers.composite,1280, 360) # [2,3] Gaussioan Filtered

                # render the image
                output.Render(buffers.composite)

                # update the title bar
                output.SetStatus("{:s} | Network {:.0f} FPS".format(args.network, net.GetNetworkFPS()))

                # print out performance info
                net.PrintProfilerTimes()
             

            # Object Detection ------------------------------------------------------------------------------------------------------
            elif state_machine.is_state_1:
               # State-1 (Object Detection)

                # Get Image from camera GFilter640x480_cuda [Camera1920x720_cuda]
                Camera = input.Capture()
                CurrState='Det'
                #Allocate buffers from Camera info
                buffers.Alloc(Camera.shape, Camera.format)

                # Create buffer for resized image, same format
                Camera640x360_cuda_rgb8 = jetson.utils.cudaAllocMapped(width=640,height=360,format=Camera.format)#[A]

                # Resize camera img to resized_img
                jetson.utils.cudaResize(Camera, Camera640x360_cuda_rgb8)

                # Clear Depth Mask Array with 0.0s, only let detpth values through if object detected
                Depth_mask640x360_array = np.zeros(Camera640x360_cuda_rgb8.shape, np.float32)                

                # Process  depth from image without overlays 
                netd.Process(Camera, buffers.depth, argsd.colormap, argsd.filter_mode)

                # Create Display Buffers
                Bivxel640x360_cuda_rgb8 = jetson.utils.cudaAllocMapped(width=640,height=360,format=Camera.format) #[E]
                Depth640x360_raw_cuda_rgb8 = jetson.utils.cudaAllocMapped(width=640,height=360,format=Camera.format)#[B]
                Detect640x360_cuda_rgb8 = jetson.utils.cudaAllocMapped(width=640,height=360,format=Camera.format)#[B]
                Bar640x360_cuda_rgb8 = jetson.utils.cudaAllocMapped(width=640,height=360,format=Camera.format)#[E]
                Diag640x360_cuda_rgb8 = jetson.utils.cudaAllocMapped(width=640,height=360,format=Camera.format)#[D]

                

                # Find detections in image and resize with overlay detections
                detections = net.Detect(Camera, overlay=args.overlay)                

                # resize camera detections+object overlays into buffer
                jetson.utils.cudaResize(Camera, Detect640x360_cuda_rgb8)                 

                # Loop for a sibgle object (ignore if more that one object of the same lable is found)
                for detection in detections:
                    #print(detection)
                    if detection.ClassID == Detection: 
                        x1=int(detection.Left//2)
                        y1=int(detection.Right//2)
                        x2=int(detection.Top//2)
                        y2=int(detection.Bottom//2)
                        #print(x1,x2,y1,y2)
                        # Fill the depth mask when and object is found
                        Depth_mask640x360_array[x2:y2,x1:y1]=1.0

                        # Inform Bisplay of detction label
                        # with variable_lock:                    
                        #     shared_variable=detection.ClassID

                # (0, 210, 0, 180)
                # >>>jetson.utils.cudaDrawRect(Bar640x360_cuda_rgb8, (0, 0, 210, 180), (127,255,200,200))

                # Get Raw depth from array pointer 
                Depth224x224_raw_cuda = cudaFromNumpy(50*Depth224x224_raw_array)
                Depth224x224_raw_cuda_rgb8 = convert_color(Depth224x224_raw_cuda, "rgb8") 
                jetson.utils.cudaResize(Depth224x224_raw_cuda_rgb8, Depth640x360_raw_cuda_rgb8)   


                # Extract numpy array from de resized image   
                Depth640x360_raw_array = cudaToNumpy(Depth640x360_raw_cuda_rgb8)

                # Multiply bt gaussian (Filter)
                DepthxDmask640x360_array = np.multiply( Depth_mask640x360_array ,Depth640x360_raw_array)
                DepthxDmask640x360_cuda = cudaFromNumpy(DepthxDmask640x360_array) # Convert arra to cuda
                DepthxDmask640x360_cuda_rgb8 = convert_color(DepthxDmask640x360_cuda, "rgb8") # Map to color space                

                # Get Gaussion filtered depth,  Multiply Resized Depth numpy array times Numpy GFilter and ccolor convert to RGB8
                DepthxGFilter640x360_array = np.multiply( Depth640x360_raw_array/254 ,GFilter640x480_array) 
                DepthxGFilter640x36_cuda = cudaFromNumpy(DepthxGFilter640x360_array)  
                DepthxGFilter640x36_cuda_rgb8 = convert_color(DepthxGFilter640x36_cuda, "rgb8")    

                DepthxGFilterxDMask640x360_array = np.multiply( DepthxGFilter640x360_array, Depth_mask640x360_array)                  
                DepthxGFilterxDmask640x36_cuda = cudaFromNumpy(DepthxGFilterxDMask640x360_array)  
                DepthxGFilterxDmask640x36_cuda_rgb8 = convert_color(DepthxGFilterxDmask640x36_cuda, "rgb8")

                averages = np.zeros(6)

                # Calculate average per region from Object detected mask with gausiona filter
                for i in range(6):
                    #Dregion=DepthxDmask640x360_array[regions[i][0]:regions[i][1]+1,regions[i][2]:regions[i][3]+1 ]
                    Dregion=DepthxGFilterxDMask640x360_array[regions[i][0]:regions[i][1]+1,regions[i][2]:regions[i][3]+1 ]
                    averages[i]= np.mean(Dregion)

                # Display Distance Mask by objcect average [F]
                Feet2Meter=1.0 #0.1525
                font.OverlayText(Bar640x360_cuda_rgb8, 640, 360, str(int(averages[0]*Feet2Meter)), 110, 160, (150, 150, 150), (0, 0, 0))
                font.OverlayText(Bar640x360_cuda_rgb8, 640, 360, str(int(averages[1]*Feet2Meter)), 290, 160, (150, 150, 150), (0, 0, 0))
                font.OverlayText(Bar640x360_cuda_rgb8, 640, 360, str(int(averages[2]*Feet2Meter)), 470, 160, (150, 150, 150), (0, 0, 0))
                font.OverlayText(Bar640x360_cuda_rgb8, 640, 360, str(int(averages[3]*Feet2Meter)), 110, 310, (150, 150, 150), (0, 0, 0))
                font.OverlayText(Bar640x360_cuda_rgb8, 640, 360, str(int(averages[4]*Feet2Meter)), 290, 310, (150, 150, 150), (0, 0, 0))
                font.OverlayText(Bar640x360_cuda_rgb8, 640, 360, str(int(averages[5]*Feet2Meter)), 470, 310, (150, 150, 150), (0, 0, 0))                     

                # Draw Bars on screen that represnt the average distance per region
                BarDistScale = 3
                for j in range(3):
                    jetson.utils.cudaDrawRect(Bar640x360_cuda_rgb8, (BarX+BarG*j,BarY-int(averages[j])*BarDistScale, BarX+BarG*j+BarW,BarY+1), (127,255,200,200)) #(0, 0, 210, 180)
                for j in range(3,6):
                    jetson.utils.cudaDrawRect(Bar640x360_cuda_rgb8, (BarX+BarG*(j-3),BarBY+BarY-int(averages[j])*BarDistScale, BarX+BarG*(j-3)+BarW,BarBY+BarY+1), (127,255,200,200)) #(0, 0, 210, 180)               

                # Calculate inverse  BivXel using sigmoid distance activation function(Signal user that an object is near, the closer the obhect the higher the bivration)
                Sigmoid=np.zeros(0)

                # define Activation parameters
                ScaleDet = dials[4]*8 # 4096 # PWM max value
                ScaleNav = dials[0]*8
                # Nav Activation Distance
                ActivationDet = dials[5]/10 # (Feet/Meters)Distance where activation vale will activate
                ActivationNav = dials[1]/10
                # Sigmoid Slope                
                SlopeDet = dials[6]/10
                SlopeNav = dials[2]/10
                # motor bias         
                BiasNav = dials[3]*8
                BiasDet = dials[7]*8                  


                # Define BivXel calibration parameter, calibrates each individual vibrator to "feel" the same mechanicaly/physiologically
                BivXelCal = np.ones(6)
                BivXelCal[0]=1.0
                BivXelCal[1]=1.0
                BivXelCal[2]=1.0
                BivXelCal[3]=1.0
                BivXelCal[4]=1.0
                BivXelCal[5]=1.0


                # Calculate activation
                Sigmoid = SigmoidF(averages,ScaleDet,ActivationDet,SlopeDet,False)
                print(Sigmoid)


                # Scale each VibXel accordingly
                SigmoidCal = np.multiply(Sigmoid, BivXelCal)  
                #SigmoidCal = averages*dials[1]

                #print(Sigmoid) 
            

                # Dislay  Bar bibxels wich is inverse if the distance, Bar value has a proprtional constant of 3 for space limitation
                BarBivScale=4
                for j in range(3):
                        jetson.utils.cudaDrawRect(Bivxel640x360_cuda_rgb8, (BarX+BarG*j,BarY-int(SigmoidCal[j]*BarBivScale+1), BarX+BarG*j+BarW,BarY+1), (127,127,250,200)) #(0, 0, 210, 180)
                for j in range(3,6):
                        jetson.utils.cudaDrawRect(Bivxel640x360_cuda_rgb8, (BarX+BarG*(j-3),BarBY+BarY-int(SigmoidCal[j]*BarBivScale+1), BarX+BarG*(j-3)+BarW,BarBY+BarY+1), (127,127,250,200))

                #  Display on BivXel screen if not 0, avoid singularities
                #with variable_lock:
                BivXelA= int(SigmoidCal[0]) + BiasDet
                BivXelB= int(SigmoidCal[1]) + BiasDet
                BivXelC= int(SigmoidCal[2]) + BiasDet
                BivXelD= int(SigmoidCal[3]) + BiasDet
                BivXelE= int(SigmoidCal[4]) + BiasDet
                BivXelF= int(SigmoidCal[5]) + BiasDet


                # Display VibXel [E]
                font.OverlayText(Bivxel640x360_cuda_rgb8, 640, 360, str(BivXelA), 110, 160, (150, 0, 150), (0, 0, 0))
                font.OverlayText(Bivxel640x360_cuda_rgb8, 640, 360, str(BivXelB), 290, 160, (150, 0, 150), (0, 0, 0))
                font.OverlayText(Bivxel640x360_cuda_rgb8, 640, 360, str(BivXelC), 470, 160, (150, 0, 150), (0, 0, 0))
                font.OverlayText(Bivxel640x360_cuda_rgb8, 640, 360, str(BivXelD), 110, 310, (150, 0, 150), (0, 0, 0))
                font.OverlayText(Bivxel640x360_cuda_rgb8, 640, 360, str(BivXelE), 290, 310, (150, 0, 150), (0, 0, 0))
                font.OverlayText(Bivxel640x360_cuda_rgb8, 640, 360, str(BivXelF), 470, 310, (150, 0, 150), (0, 0, 0))     

                # Calibartion Text in Diagnostics window [D]
                array=np.array(dials)
                YL1=100
                YL2=200
                YL3=300
                X0=150
                XG=140
                T0=50
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, 'Nav Scale:', T0, YL1, (150, 150, 150), (0, 0, 0))
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, str(ScaleNav), X0, YL1, (0, 150, 0), (0, 0, 0))
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, 'Nav Activ:', T0+XG, YL1, (150, 150, 150), (0, 0, 0))
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, str(ActivationNav), X0+XG, YL1, (0, 150, 0), (0, 0, 0))
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, 'Nav Slope:', T0+2*XG, YL1, (150, 150, 150), (0, 0, 0))                
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, str(SlopeNav), X0+2*XG, YL1, (0, 150, 0), (0, 0, 0))
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, ' Nav Bias:', T0+3*XG, YL1, (150, 150, 150), (0, 0, 0))
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, str(array[3]), X0+3*XG, YL1, (0, 150, 0), (0, 0, 0))
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, 'Det Scale:', T0, YL2, (150, 150, 150), (0, 0, 0))
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, str(ScaleDet), X0, YL2, (0, 150, 0), (0, 0, 0))
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, 'Det Activ:', T0+XG, YL2, (150, 150, 150), (0, 0, 0))
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, str(ActivationDet), X0+XG, YL2, (0, 150, 0), (0, 0, 0))
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, 'Det Slope:', T0+2*XG, YL2, (150, 150, 150), (0, 0, 0)) 
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, str(SlopeDet), X0+2*XG, YL2, (0, 150, 0), (0, 0, 0))
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, ' Det Bias:', T0+3*XG, YL2, (150, 150, 150), (0, 0, 0))
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, str(array[7]), X0+3*XG, YL2, (0, 150, 0), (0, 0, 0))  

                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, 'State Num:', T0, YL3, (150, 150, 150), (0, 0, 0))
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, CurrState, X0, YL3, (0, 150, 0), (0, 0, 0))                                   
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, 'Calibrat :', T0+XG, YL3, (150, 150, 150), (0, 0, 0))
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, Cal, X0+XG, YL3, (0, 150, 0), (0, 0, 0))
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, '   Object:', T0+3*XG, YL3, (150, 150, 150), (0, 0, 0))                
                font.OverlayText(Diag640x360_cuda_rgb8, 640, 360, str(Detection), X0+3*XG, YL3, (0, 150, 0), (0, 0, 0))                              

                # Display Arrangement
                #  [A][B][C]
                #  [D][E][F]
                #
                # Display images in overlay                        
                # [A] Image + Detection overlay
                cudaOverlay(Detect640x360_cuda_rgb8, buffers.composite, 0, 0) # (1,1) Camera and Detection
                # [B] Depth * DMask(Function of state, S0>Mask=1.0[Pass all], S1>Mask as function of tection[Pass detected detpth ony])
                cudaOverlay(DepthxDmask640x360_cuda_rgb8, buffers.composite, 640, 0) # (1,2) Depth Mask  resized_bisplay
                # [C] Depth*GFilter*DetectMask
                cudaOverlay(DepthxGFilterxDmask640x36_cuda_rgb8 , buffers.composite, 1280,0) #(1,3) Gaussian Filter
                #cudaOverlay(DepthxDmask640x360_cuda_rgb8 , buffers.composite, 1280,0) #(1,3) Gaussian Filter
                # [D] Depth*GMask*DMask (DMask fubction of state)
                cudaOverlay(Diag640x360_cuda_rgb8 , buffers.composite,0, 360) # [2,1] Diagnostics/Status
                # [E] Bibxels, 
                cudaOverlay(Bivxel640x360_cuda_rgb8, buffers.composite, 640, 360) # [2,2]  9Circles)
                # [F] Histograms
                cudaOverlay(Bar640x360_cuda_rgb8, buffers.composite,1280, 360) # [2,3] Gaussioan Filtered

                # render the image
                output.Render(buffers.composite)

                # update the title bar
                output.SetStatus("{:s} | Network {:.0f} FPS".format(args.network, net.GetNetworkFPS()))

                # print out performance info
                net.PrintProfilerTimes()
            
            # cALIBRATION ------------------------------------------------------------------------------------------------------
            elif state_machine.is_state_2:

                CurrState='Cal'
                # Store calibartion array end exit to [0]Navigation state
                np.save('CALIBRATION.npy',dials)


                #   From 2 to 0, (From Detection Mode to Depth Mode)
                state_machine.to_state_0()

                

 

                       

                # try:
                #     data = M8p.readline().decode().strip()
                #     numbers_str=data.split('\t')
                #     dials=[254-int(num) for num in numbers_str]
                #     array=np.array(dials)
                #     if data:
                print(dials)
               
                #      # Display Diagnostics
             
                # except:
                #     M8p.close()  
                  

            # exit on input/output EOS
            if not input.IsStreaming() or not output.IsStreaming():
                break
                

    except KeyboardInterrupt:
        pass
    finally:
        # server.close()
        print('Closing Server')
                
if __name__ == "__main__":
    main()      

Command Word Recognition (Pico Voice)

Python
Listens to word commands from USB microphone and sends appropriate code to Main
import pvporcupine
from pvrecorder import PvRecorder
import socket

# porcupine = pvporcupine.create(
#   access_key='+CYOg2KP3c80KxXubw9/xpezyTMmtj07p7W/rirbWShQe3aWm7xizg==',
#  keywords=['picovoice', 'bumblebee']
# )

porcupine = pvporcupine.create(
  access_key='+CYOg2KP3c80KxXubw9/xpezyTMmtj07p7W/rirbWShQe3aWm7xizg==',
  keyword_paths=['~/pvrecorder/demo/python/words/Navigate_en_jetson_v3_0_0.ppn',
                '~/pvrecorder/demo/python/words/Person_en_jetson_v3_0_0.ppn',		
		     '~/pvrecorder/demo/python/words/Table_en_jetson_v3_0_0.ppn',
		     '~/pvrecorder/demo/python/words/Calib_en_jetson_v3_0_0.ppn']                 
                 
)

def get_next_audio_frame():
  pass

recorder = PvRecorder(device_index=3, frame_length=512) #3

recorder.start()

# Stop the recordeer
recorder.stop()

recorder.start()

host = socket.gethostname()  # as both code is running on same pc
print(host)
port = 12453  # socket server port number

client_socket = socket.socket()  # instantiate
client_socket.connect((host, port))  # connect to the server


while True:
  audio_frame = recorder.read()   #get_next_audio_frame()
  keyword_index = porcupine.process(audio_frame)
  # string_index=keyword_index.to_bytes(1,byteorder='big')
  # print(keyword_index)
  #
  # client_socket.send(chr(keyword_index).encode())
  #if keyword_index > 0 :
  if keyword_index == 0:
        # detected `Navigate`
        print('Navgate')
        client_socket.send(b'\x30')
  elif keyword_index == 1:
        # detected `Person`
        print('Person')
        client_socket.send(b'\x31')
  elif keyword_index == 2:
        # detected `Table`
        print('Table')
        client_socket.send(b'\x32')    
  elif keyword_index == 3:
        # detected `Calib`
        print('Calibration')
        client_socket.send(b'\x33')            

Credits

Alex Tejada

Alex Tejada

1 project • 0 followers

Comments