Night R
Created November 22, 2019 © CC BY

Securing Energy Metering with Azure Sphere

Smart Anti-tamper Meter for metering the Electricity Usage via Azure Sphere MT3620 Starter Kit.

IntermediateFull instructions providedOver 6 days54
Securing Energy Metering with Azure Sphere

Things used in this project

Hardware components

Azure Sphere MT3620 Starter Kit
Avnet Azure Sphere MT3620 Starter Kit
×1
USB-A to Micro-USB Cable
USB-A to Micro-USB Cable
×1
SparkFun USB to Serial Breakout - FT232RL
SparkFun USB to Serial Breakout - FT232RL
×1
Relay Module (Generic)
×2
ACS758 Current Sensor module
×1
Axial Fan, 12 VDC
Axial Fan, 12 VDC
×1
Male/Female Jumper Wires
Male/Female Jumper Wires
×1

Software apps and online services

Microsoft Azure
Microsoft Azure
Visual Studio 2017
Microsoft Visual Studio 2017
Github Code Sample for Azure Sphere

Hand tools and fabrication machines

Soldering Station Set, 240v
Soldering Station Set, 240v

Story

Read more

Schematics

Azure Sphere-IO connections

- Raw connections of Relay & ACS758 through GPIO of mikroBUS
- J11 serial debug through FTDI or USBtoSerial Module

Code

Azure Onboard sensor and tamper detection(main)

C/C++
It allows us to visualize the real-time sensor values that can be tuned to the the user-requirements.
The result is shown in the console of inbuilt GDB Debugger Session console.
/* Copyright (c) Microsoft Corporation. All rights reserved.
   Licensed under the MIT License. */

   /************************************************************************************************
   Name: AvnetStarterKitReferenceDesign
   Sphere OS: 19.02
   This file contains the 'main' function. Program execution begins and ends there

   Authors:
   Peter Fenn (Avnet Engineering & Technology)
   Brian Willess (Avnet Engineering & Technology)

   Purpose:
   Using the Avnet Azure Sphere Starter Kit demonstrate the following features

   1. Read X,Y,Z accelerometer data from the onboard LSM6DSO device using the I2C Interface
   2. Read X,YZ Angular rate data from the onboard LSM6DSO device using the I2C Interface
   3. Read the barometric pressure from the onboard LPS22HH device using the I2C Interface
   4. Read the temperature from the onboard LPS22HH device using the I2C Interface
   5. Read the state of the A and B buttons
   6. Read BSSID address, Wi-Fi AP SSID, Wi-Fi Frequency
   *************************************************************************************************
      Connected application features: When connected to Azure IoT Hub or IoT Central
   *************************************************************************************************
   7. Send X,Y,Z accelerometer data to Azure
   8. Send barometric pressure data to Azure
   9. Send button state data to Azure
   10. Send BSSID address, Wi-Fi AP SSID, Wi-Fi Frequency data to Azure
   11. Send the application version string to Azure
   12. Control user RGB LEDs from the cloud using device twin properties
   13. Control optional Relay Click relays from the cloud using device twin properties
   14. Send Application version up as a device twin property
   15. Stop application using "haltApplication" Direct Method call from the cloud
   16. Modify sensor polling time using "setSensorPollTinme" Direct Method from the cloud
   TODO
   1. Add support for a OLED display
   2. Add support for on-board light sensor
   	 
   *************************************************************************************************/

#include <errno.h>
#include <signal.h>
#include <stdbool.h>
#include <stdlib.h>
#include <string.h> 
#include <time.h>
#include <unistd.h>
#include <stdio.h>
#include <math.h>

// applibs_versions.h defines the API struct versions to use for applibs APIs.
#include "applibs_versions.h"
#include "epoll_timerfd_utilities.h"
#include "i2c.h"
#include "mt3620_avnet_dev.h"
#include "deviceTwin.h"
#include "azure_iot_utilities.h"
#include "connection_strings.h"
#include "build_options.h"

#include <applibs/log.h>
#include <applibs/i2c.h>
#include <applibs/gpio.h>
#include <applibs/wificonfig.h>
#include <azureiot/iothub_device_client_ll.h>

// Provide local access to variables in other files
extern twin_t twinArray[];
extern int twinArraySize;
extern IOTHUB_DEVICE_CLIENT_LL_HANDLE iothubClientHandle;
extern int accelTimerFd;

// Support functions.
static void TerminationHandler(int signalNumber);
static int InitPeripheralsAndHandlers(void);
static void ClosePeripheralsAndHandlers(void);

// File descriptors - initialized to invalid value
int epollFd = -1;
static int buttonPollTimerFd = -1;
static int buttonAGpioFd = -1;
static int buttonBGpioFd = -1;

int userLedRedFd = -1;
int userLedGreenFd = -1;
int userLedBlueFd = -1;
int appLedFd = -1;
int wifiLedFd = -1;
int clickSocket1Relay1Fd = -1;
int clickSocket1Relay2Fd = -1;

// Button state variables, initilize them to button not-pressed (High)
static GPIO_Value_Type buttonAState = GPIO_Value_High;
static GPIO_Value_Type buttonBState = GPIO_Value_High;

#if (defined(IOT_CENTRAL_APPLICATION) || defined(IOT_HUB_APPLICATION))
	bool versionStringSent = false;
#endif

// Define the Json string format for the accelerator button press data
static const char cstrButtonTelemetryJson[] = "{\"%s\":\"%d\"}";

// Termination state
volatile sig_atomic_t terminationRequired = false;

/// <summary>
///     Signal handler for termination requests. This handler must be async-signal-safe.
/// </summary>
static void TerminationHandler(int signalNumber)
{
    // Don't use Log_Debug here, as it is not guaranteed to be async-signal-safe.
    terminationRequired = true;
}

/// <summary>
///     Allocates and formats a string message on the heap.
/// </summary>
/// <param name="messageFormat">The format of the message</param>
/// <param name="maxLength">The maximum length of the formatted message string</param>
/// <returns>The pointer to the heap allocated memory.</returns>
static void *SetupHeapMessage(const char *messageFormat, size_t maxLength, ...)
{
	va_list args;
	va_start(args, maxLength);
	char *message =
		malloc(maxLength + 1); // Ensure there is space for the null terminator put by vsnprintf.
	if (message != NULL) {
		vsnprintf(message, maxLength, messageFormat, args);
	}
	va_end(args);
	return message;
}

/// <summary>
///     Direct Method callback function, called when a Direct Method call is received from the Azure
///     IoT Hub.
/// </summary>
/// <param name="methodName">The name of the method being called.</param>
/// <param name="payload">The payload of the method.</param>
/// <param name="responsePayload">The response payload content. This must be a heap-allocated
/// string, 'free' will be called on this buffer by the Azure IoT Hub SDK.</param>
/// <param name="responsePayloadSize">The size of the response payload content.</param>
/// <returns>200 HTTP status code if the method name is reconginized and the payload is correctly parsed;
/// 400 HTTP status code if the payload is invalid;</returns>
/// 404 HTTP status code if the method name is unknown.</returns>
static int DirectMethodCall (const char *methodName, const char *payload, size_t payloadSize, char **responsePayload, size_t *responsePayloadSize)
{
	Log_Debug("\nDirect Method called %s\n", methodName);

	int result = 404; // HTTP status code.

	if (payloadSize < 32) {

		// Declare a char buffer on the stack where we'll operate on a copy of the payload.  
		char directMethodCallContent[payloadSize + 1];

		// Prepare the payload for the response. This is a heap allocated null terminated string.
		// The Azure IoT Hub SDK is responsible of freeing it.
		*responsePayload = NULL;  // Reponse payload content.
		*responsePayloadSize = 0; // Response payload content size.


		// Look for the haltApplication method name.  This direct method does not require any payload, other than
		// a valid Json argument such as {}.

		if (strcmp(methodName, "haltApplication") == 0) {

			// Log that the direct method was called and set the result to reflect success!
			Log_Debug("haltApplication() Direct Method called\n");
			result = 200;

			// Construct the response message.  This response will be displayed in the cloud when calling the direct method
			static const char resetOkResponse[] =
				"{ \"success\" : true, \"message\" : \"Halting Application\" }";
			size_t responseMaxLength = sizeof(resetOkResponse);
			*responsePayload = SetupHeapMessage(resetOkResponse, responseMaxLength);
			if (*responsePayload == NULL) {
				Log_Debug("ERROR: Could not allocate buffer for direct method response payload.\n");
				abort();
			}
			*responsePayloadSize = strlen(*responsePayload);

			// Set the terminitation flag to true.  When in Visual Studio this will simply halt the application.
			// If this application was running with the device in field-prep mode, the application would halt
			// and the OS services would resetart the application.
			terminationRequired = true;
			return result;
		}

		// Check to see if the setSensorPollTime direct method was called
		else if (strcmp(methodName, "setSensorPollTime") == 0) {

			// Log that the direct method was called and set the result to reflect success!
			Log_Debug("setSensorPollTime() Direct Method called\n");
			result = 200;

			// The payload should contain a JSON object such as: {"pollTime": 20}
			if (directMethodCallContent == NULL) {
				Log_Debug("ERROR: Could not allocate buffer for direct method request payload.\n");
				abort();
			}

			// Copy the payload into our local buffer then null terminate it.
			memcpy(directMethodCallContent, payload, payloadSize);
			directMethodCallContent[payloadSize] = 0; // Null terminated string.

			JSON_Value *payloadJson = json_parse_string(directMethodCallContent);

			// Verify we have a valid JSON string from the payload
			if (payloadJson == NULL) {
				goto payloadError;
			}

			// Verify that the payloadJson contains a valid JSON object
			JSON_Object *pollTimeJson = json_value_get_object(payloadJson);
			if (pollTimeJson == NULL) {
				goto payloadError;
			}

			// Pull the Key: value pair from the JSON object, we're looking for {"pollTime": <integer>}
			// Verify that the new timer is < 0
			int newPollTime = (int)json_object_get_number(pollTimeJson, "pollTime");
			if (newPollTime < 1) {
				goto payloadError;
			}
			else {

				Log_Debug("New PollTime %d\n", newPollTime);

				// Construct the response message.  This will be displayed in the cloud when calling the direct method
				static const char newPollTimeResponse[] =
					"{ \"success\" : true, \"message\" : \"New Sensor Poll Time %d seconds\" }";
				size_t responseMaxLength = sizeof(newPollTimeResponse) + strlen(payload);
				*responsePayload = SetupHeapMessage(newPollTimeResponse, responseMaxLength, newPollTime);
				if (*responsePayload == NULL) {
					Log_Debug("ERROR: Could not allocate buffer for direct method response payload.\n");
					abort();
				}
				*responsePayloadSize = strlen(*responsePayload);

				// Define a new timespec variable for the timer and change the timer period
				struct timespec newAccelReadPeriod = { .tv_sec = newPollTime,.tv_nsec = 0 };
				SetTimerFdToPeriod(accelTimerFd, &newAccelReadPeriod);
				return result;
			}
		}
		else {
			result = 404;
			Log_Debug("INFO: Direct Method called \"%s\" not found.\n", methodName);

			static const char noMethodFound[] = "\"method not found '%s'\"";
			size_t responseMaxLength = sizeof(noMethodFound) + strlen(methodName);
			*responsePayload = SetupHeapMessage(noMethodFound, responseMaxLength, methodName);
			if (*responsePayload == NULL) {
				Log_Debug("ERROR: Could not allocate buffer for direct method response payload.\n");
				abort();
			}
			*responsePayloadSize = strlen(*responsePayload);
			return result;
		}

	}
		else {
		Log_Debug("Payload size > 32 bytes, aborting Direct Method execution\n");
		goto payloadError;
	}

	// If there was a payload error, construct the 
	// response message and send it back to the IoT Hub for the user to see
payloadError:


	result = 400; // Bad request.
	Log_Debug("INFO: Unrecognised direct method payload format.\n");

	static const char noPayloadResponse[] =
		"{ \"success\" : false, \"message\" : \"request does not contain an identifiable "
		"payload\" }";

	size_t responseMaxLength = sizeof(noPayloadResponse) + strlen(payload);
	responseMaxLength = sizeof(noPayloadResponse);
	*responsePayload = SetupHeapMessage(noPayloadResponse, responseMaxLength);
	if (*responsePayload == NULL) {
		Log_Debug("ERROR: Could not allocate buffer for direct method response payload.\n");
		abort();
	}
	*responsePayloadSize = strlen(*responsePayload);

	return result;

}

/// <summary>
///     Handle button timer event: if the button is pressed, report the event to the IoT Hub.
/// </summary>
static void ButtonTimerEventHandler(EventData *eventData)
{

	bool sendTelemetryButtonA = false;
	bool sendTelemetryButtonB = false;

	if (ConsumeTimerFdEvent(buttonPollTimerFd) != 0) {
		terminationRequired = true;
		return;
	}

	// Check for button A press
	GPIO_Value_Type newButtonAState;
	int result = GPIO_GetValue(buttonAGpioFd, &newButtonAState);
	if (result != 0) {
		Log_Debug("ERROR: Could not read button GPIO: %s (%d).\n", strerror(errno), errno);
		terminationRequired = true;
		return;
	}

	// If the A button has just been pressed, send a telemetry message
	// The button has GPIO_Value_Low when pressed and GPIO_Value_High when released
	if (newButtonAState != buttonAState) {
		if (newButtonAState == GPIO_Value_Low) {
			Log_Debug("Button A pressed!\n");
			sendTelemetryButtonA = true;
		}
		else {
			Log_Debug("Button A released!\n");
		}
		
		// Update the static variable to use next time we enter this routine
		buttonAState = newButtonAState;
	}

	// Check for button B press
	GPIO_Value_Type newButtonBState;
	result = GPIO_GetValue(buttonBGpioFd, &newButtonBState);
	if (result != 0) {
		Log_Debug("ERROR: Could not read button GPIO: %s (%d).\n", strerror(errno), errno);
		terminationRequired = true;
		return;
	}

	// If the B button has just been pressed/released, send a telemetry message
	// The button has GPIO_Value_Low when pressed and GPIO_Value_High when released
	if (newButtonBState != buttonBState) {
		if (newButtonBState == GPIO_Value_Low) {
			// Send Telemetry here
			Log_Debug("Button B pressed!\n");
			sendTelemetryButtonB = true;
		}
		else {
			Log_Debug("Button B released!\n");

		}

		// Update the static variable to use next time we enter this routine
		buttonBState = newButtonBState;
	}
	
	// If either button was pressed, then enter the code to send the telemetry message
	if (sendTelemetryButtonA || sendTelemetryButtonB) {

		char *pjsonBuffer = (char *)malloc(JSON_BUFFER_SIZE);
		if (pjsonBuffer == NULL) {
			Log_Debug("ERROR: not enough memory to send telemetry");
		}

		if (sendTelemetryButtonA) {
			// construct the telemetry message  for Button A
			snprintf(pjsonBuffer, JSON_BUFFER_SIZE, cstrButtonTelemetryJson, "buttonA", newButtonAState);
			Log_Debug("\n[Info] Sending telemetry %s\n", pjsonBuffer);
			AzureIoT_SendMessage(pjsonBuffer);
		}

		if (sendTelemetryButtonB) {
			// construct the telemetry message for Button B
			snprintf(pjsonBuffer, JSON_BUFFER_SIZE, cstrButtonTelemetryJson, "buttonB", newButtonBState);
			Log_Debug("\n[Info] Sending telemetry %s\n", pjsonBuffer);
			AzureIoT_SendMessage(pjsonBuffer);
		}

		free(pjsonBuffer);
	}

}

// event handler data structures. Only the event handler field needs to be populated.
static EventData buttonEventData = { .eventHandler = &ButtonTimerEventHandler };

/// <summary>
///     Set up SIGTERM termination handler, initialize peripherals, and set up event handlers.
/// </summary>
/// <returns>0 on success, or -1 on failure</returns>
static int InitPeripheralsAndHandlers(void)
{
    struct sigaction action;
    memset(&action, 0, sizeof(struct sigaction));
    action.sa_handler = TerminationHandler;
    sigaction(SIGTERM, &action, NULL);

    epollFd = CreateEpollFd();
    if (epollFd < 0) {
        return -1;
    }

	if (initI2c() == -1) {
		return -1;
	}
	
	// Traverse the twin Array and for each GPIO item in the list open the file descriptor
	for (int i = 0; i < twinArraySize; i++) {

		// Verify that this entry is a GPIO entry
		if (twinArray[i].twinGPIO != NO_GPIO_ASSOCIATED_WITH_TWIN) {

			*twinArray[i].twinFd = -1;

			// For each item in the data structure, initialize the file descriptor and open the GPIO for output.  Initilize each GPIO to its specific inactive state.
			*twinArray[i].twinFd = (int)GPIO_OpenAsOutput(twinArray[i].twinGPIO, GPIO_OutputMode_PushPull, twinArray[i].active_high ? GPIO_Value_Low : GPIO_Value_High);

			if (*twinArray[i].twinFd < 0) {
				Log_Debug("ERROR: Could not open LED %d: %s (%d).\n", twinArray[i].twinGPIO, strerror(errno), errno);
				return -1;
			}
		}
	}

	// Open button A GPIO as input
	Log_Debug("Opening Starter Kit Button A as input.\n");
	buttonAGpioFd = GPIO_OpenAsInput(MT3620_RDB_BUTTON_A);
	if (buttonAGpioFd < 0) {
		Log_Debug("ERROR: Could not open button A GPIO: %s (%d).\n", strerror(errno), errno);
		return -1;
	}
	// Open button B GPIO as input
	Log_Debug("Opening Starter Kit Button B as input.\n");
	buttonBGpioFd = GPIO_OpenAsInput(MT3620_RDB_BUTTON_B);
	if (buttonBGpioFd < 0) {
		Log_Debug("ERROR: Could not open button B GPIO: %s (%d).\n", strerror(errno), errno);
		return -1;
	}

	// Set up a timer to poll the buttons
	struct timespec buttonPressCheckPeriod = { 0, 1000000 };
	buttonPollTimerFd =
		CreateTimerFdAndAddToEpoll(epollFd, &buttonPressCheckPeriod, &buttonEventData, EPOLLIN);
	if (buttonPollTimerFd < 0) {
		return -1;
	}

	// Tell the system about the callback function that gets called when we receive a device twin update message from Azure
	AzureIoT_SetDeviceTwinUpdateCallback(&deviceTwinChangedHandler);

	// Tell the system about the callback function to call when we receive a Direct Method message from Azure
	AzureIoT_SetDirectMethodCallback(&DirectMethodCall);

    return 0;
}

/// <summary>
///     Close peripherals and handlers.
/// </summary>
static void ClosePeripheralsAndHandlers(void)
{
    Log_Debug("Closing file descriptors.\n");
    
	closeI2c();
    CloseFdAndPrintError(epollFd, "Epoll");
	CloseFdAndPrintError(buttonPollTimerFd, "buttonPoll");
	CloseFdAndPrintError(buttonAGpioFd, "buttonA");
	CloseFdAndPrintError(buttonBGpioFd, "buttonB");

	// Traverse the twin Array and for each GPIO item in the list the close the file descriptor
	for (int i = 0; i < twinArraySize; i++) {

		// Verify that this entry has an open file descriptor
		if (twinArray[i].twinGPIO != NO_GPIO_ASSOCIATED_WITH_TWIN) {

			CloseFdAndPrintError(*twinArray[i].twinFd, twinArray[i].twinKey);
		}
	}
}

/// <summary>
///     Main entry point for this application.
/// </summary>
int main(int argc, char *argv[])
{
	// Variable to help us send the version string up only once
	bool networkConfigSent = false;
	char ssid[128];
	uint32_t frequency;
	char bssid[20];
	
	// Clear the ssid array
	memset(ssid, 0, 128);

	Log_Debug("Version String: %s\n", argv[1]);
	Log_Debug("Avnet Starter Kit Simple Reference Application starting.\n");
    if (InitPeripheralsAndHandlers() != 0) {
        terminationRequired = true;
    }

    // Use epoll to wait for events and trigger handlers, until an error or SIGTERM happens
    while (!terminationRequired) {
        if (WaitForEventAndCallHandler(epollFd) != 0) {
            terminationRequired = true;
        }

#if (defined(IOT_CENTRAL_APPLICATION) || defined(IOT_HUB_APPLICATION))
		// Setup the IoT Hub client.
		// Notes:
		// - it is safe to call this function even if the client has already been set up, as in
		//   this case it would have no effect;
		// - a failure to setup the client is a fatal error.
		if (!AzureIoT_SetupClient()) {
			Log_Debug("ERROR: Failed to set up IoT Hub client\n");
			break;
		}
#endif 

		WifiConfig_ConnectedNetwork network;
		int result = WifiConfig_GetCurrentNetwork(&network);
		if (result < 0) {
			// Log_Debug("INFO: Not currently connected to a WiFi network.\n");
		}
		else {

			frequency = network.frequencyMHz;
			snprintf(bssid, JSON_BUFFER_SIZE, "%02x:%02x:%02x:%02x:%02x:%02x",
				network.bssid[0], network.bssid[1], network.bssid[2], 
				network.bssid[3], network.bssid[4], network.bssid[5]);

			if ((strncmp(ssid, (char*)&network.ssid, network.ssidLength)!=0) || !networkConfigSent) {
				
				memset(ssid, 0, 128);
				strncpy(ssid, network.ssid, network.ssidLength);
				Log_Debug("SSID: %s\n", ssid);
				Log_Debug("Frequency: %dMHz\n", frequency);
				Log_Debug("bssid: %s\n", bssid);
				networkConfigSent = true;

#if (defined(IOT_CENTRAL_APPLICATION) || defined(IOT_HUB_APPLICATION))
				// Note that we send up this data to Azure if it changes, but the IoT Central Properties elements only 
				// show the data that was currenet when the device first connected to Azure.
				checkAndUpdateDeviceTwin("ssid", &ssid, TYPE_STRING, false);
				checkAndUpdateDeviceTwin("freq", &frequency, TYPE_INT, false);
				checkAndUpdateDeviceTwin("bssid", &bssid, TYPE_STRING, false);
#endif 
			}
		}	   		 	  	  	   	
#if (defined(IOT_CENTRAL_APPLICATION) || defined(IOT_HUB_APPLICATION))
		if (iothubClientHandle != NULL && !versionStringSent) {

			checkAndUpdateDeviceTwin("versionString", argv[1], TYPE_STRING, false);
			versionStringSent = true;
		}

		// AzureIoT_DoPeriodicTasks() needs to be called frequently in order to keep active
		// the flow of data with the Azure IoT Hub
		AzureIoT_DoPeriodicTasks();
#endif
    }

    ClosePeripheralsAndHandlers();
    Log_Debug("Application exiting.\n");
    return 0;
}

Azure Onboard sensor and tamper detection(app manifest)

C/C++
change to pin mapping can be accessed here, before running the code over RT or softcore.
{
  "SchemaVersion": 1,
  "Name": "Avnet-Starter-Kit-reference-V1.0",
  "ComponentId": "685f13af-25a5-40b2-8dd8-8cbc253ecbd8",
  "EntryPoint": "/bin/app",
  "CmdArgs": [ "Avnet-Starter-Kit-reference-V2.0" ],
  "Capabilities": {
    "AllowedConnections": [],
    "AllowedTcpServerPorts": [],
    "AllowedUdpServerPorts": [],
    "Gpio": [ 0, 4, 5, 8, 9, 10, 12, 13, 34 ],
    "Uart": [],
    "I2cMaster": [ "ISU2" ],
    "SpiMaster": [],
    "WifiConfig": true,
    "NetworkConfig": true,
    "SystemTime": true
  }
}

Azure Onboard sensor and tamper detection(build options)

C/C++
Read comments before deploying code over the Azure Sphere
#pragma once

// If your application is going to connect to an IoT Central Application, then enable this define.  When
// enabled Device Twin JSON updates will conform to what IoT Central expects to confirm Device Twin settings
//#define IOT_CENTRAL_APPLICATION

// If your application is going to connect straight to a IoT Hub, then enable this define.
//#define IOT_HUB_APPLICATION

#if (defined(IOT_CENTRAL_APPLICATION) && defined(IOT_HUB_APPLICATION))
#error "Can not define both IoT Central and IoT Hub Applications at the same time only define one."
#endif 

#if (!defined(IOT_CENTRAL_APPLICATION) && !defined(IOT_HUB_APPLICATION))
#warning "Building application for no cloud connectivity"
#endif 

#ifdef IOT_CENTRAL_APPLICATION
#warning "Building for IoT Central Application"
#endif 

#ifdef IOT_HUB_APPLICATION
#warning "Building for IoT Hub Application"
#endif 


// Defines how quickly the accelerator data is read and reported
#define ACCEL_READ_PERIOD_SECONDS 1
#define ACCEL_READ_PERIOD_NANO_SECONDS 0

// Enables I2C read/write debug
//#define ENABLE_READ_WRITE_DEBUG

Azure Relay control through mikroBUS-IO(main)

C/C++
Relay-1 is used as control switch for output-load
Relay-2 is used for switching 12V Ext. powered fan at desired periods.
Run-time can be modified for according to the user()
/**
* copyright (c) 2018, James Flynn
* SPDX-License-Identifier: MIT
*/

#include <errno.h>
#include <signal.h>
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <time.h>

// applibs_versions.h defines the API struct versions to use for applibs APIs.
#include "applibs_versions.h"
#include <applibs/log.h>

#include "mt3620_rdb.h"

#include "relay.h"

#define MIKROE_PWM  MT3620_GPIO1   //click#1=GPIO0;  click#2=GPIO1
#define MIKROE_CS   MT3620_GPIO35  //click#1=GPIO34; click#2=GPIO35

static int r1PinFd;  //relay #1
static GPIO_Value_Type relay1Pin;
static int r2PinFd;  //relay #2
static GPIO_Value_Type relay2Pin;

void init(void)
{
	r1PinFd = GPIO_OpenAsOutput(MIKROE_PWM, relay1Pin, GPIO_Value_Low);
	r2PinFd = GPIO_OpenAsOutput(MIKROE_CS, relay2Pin, GPIO_Value_Low);
}

void    state(RELAY* ptr)
{
	if (ptr->relay1_status == 1)
		GPIO_SetValue(r1PinFd, GPIO_Value_High);
	else
		GPIO_SetValue(r1PinFd, GPIO_Value_Low); 

	if (ptr->relay2_status == 1)
		GPIO_SetValue(r2PinFd, GPIO_Value_High);
	else
		GPIO_SetValue(r2PinFd, GPIO_Value_Low);
}

void usage(void)
{
	Log_Debug(" The 'relay_demo' program can be started with several options:\n");
	Log_Debug(" -r X: Set the run-time for 'X' seconds\n");
	Log_Debug(" -?  : Display usage info\n");
}

int main(int argc, char *argv[])
{

	int    i, run_time = 6;  //default to 30 second run time
	RELAY* rptr;

	while ((i = getopt(argc, argv, "tr:?")) != -1)

		switch (i) {
		case 'r':
			sscanf(optarg, "%x", &run_time);
			Log_Debug(">> run-time set to %d seconds ", run_time);
			break;
		case '?':
			usage();
			exit(EXIT_SUCCESS);
		default:
			Log_Debug(">> unknown option character `\\x%x'.\n", optopt);
			exit(EXIT_FAILURE);
		}

	Log_Debug("\n\n");
	Log_Debug("     ####\r\n");
	Log_Debug("    **  **     SW reuse using C example\r\n");
	Log_Debug("   ##    ##    for the Relay Click\r\n");
	Log_Debug("  ** '''' **\r\n");
	Log_Debug("\r\n");
	Log_Debug("This demo simply alternates the relays through different\n");
	Log_Debug("states at a 1 second interval. This demo requires using Socket #1.\r\n");

	rptr = open_relay(state, init);
	sleep(1);
	i = 0;
	while (i++ < run_time) {
		relaystate(rptr, (i & 1) ? relay1_set : relay1_clr);
		relaystate(rptr, (i & 2) ? relay2_set : relay2_clr);
		Log_Debug("(%d) relay2 %s, relay1 %s\n", i,
			relaystate(rptr, relay2_rd) ? "ON" : "OFF",
			relaystate(rptr, relay1_rd) ? "ON" : "OFF");
		sleep(1);
	}
	int fd = GPIO_OpenAsOutput(8, GPIO_OutputMode_PushPull, GPIO_Value_High);
	int fdd = GPIO_OpenAsOutput(9, GPIO_OutputMode_PushPull, GPIO_Value_High);
	const struct timespec sleepTime = { 1, 0 };
	while (true) {
		GPIO_SetValue(fd, GPIO_Value_Low);
		GPIO_SetValue(fdd, GPIO_Value_Low);
		nanosleep(&sleepTime, NULL);
		GPIO_SetValue(fd, GPIO_Value_High);
		GPIO_SetValue(fdd, GPIO_Value_High);
		nanosleep(&sleepTime, NULL);
	}

	close_relay(rptr);
	GPIO_SetValue(r1PinFd, GPIO_Value_Low);
	GPIO_SetValue(r2PinFd, GPIO_Value_Low);
	Log_Debug("relay2 OFF, relay1 oFF\nDONE...\n");
	exit(EXIT_SUCCESS);
}

Azure Relay control through mikroBUS-IO(app manifest)

C/C++
pin assignment specifics
{
  "SchemaVersion": 1,
  "Name" : "relay_demo",
  "ComponentId" : "3b468583-4290-44cd-a5cc-857419588546",
  "EntryPoint": "/bin/app",
  "CmdArgs": [],
  "Capabilities": {
    "AllowedConnections": [],
    "AllowedTcpServerPorts": [],
    "AllowedUdpServerPorts": [],
    "Gpio": [1, 8, 9, 35],
    "Uart": [],
    "I2cMaster": [],
    "SpiMaster": [],
    "WifiConfig": false,
    "NetworkConfig": false,
    "SystemTime": false
  }
}

Azure sphere current measurement through ACS758

C/C++
Prime access to on board lux sensor, but the same code provides proportional values for the ACS758 sensing module, which can be visualized in serial-terminal program through FTDI connected on J11(according to schematic)
/* Copyright (c) Microsoft Corporation. All rights reserved.
   Licensed under the MIT License. */

#include <ctype.h>
#include <stddef.h>
#include <stdbool.h>
#include <stdint.h>
#include <errno.h>

#include "mt3620-baremetal.h"
#include "mt3620-intercore.h"
#include "mt3620-uart-poll.h"
#include "mt3620-adc.h"

extern uint32_t StackTop; // &StackTop == end of TCM0

static _Noreturn void DefaultExceptionHandler(void);

static void PrintBytes(const uint8_t *buf, int start, int end);
static void PrintGuid(const uint8_t *guid);

static _Noreturn void RTCoreMain(void);

// ARM DDI0403E.d SB1.5.2-3
// From SB1.5.3, "The Vector table must be naturally aligned to a power of two whose alignment
// value is greater than or equal to (Number of Exceptions supported x 4), with a minimum alignment
// of 128 bytes.". The array is aligned in linker.ld, using the dedicated section ".vector_table".

// The exception vector table contains a stack pointer, 15 exception handlers, and an entry for
// each interrupt.
#define INTERRUPT_COUNT 100 // from datasheet
#define EXCEPTION_COUNT (16 + INTERRUPT_COUNT)
#define INT_TO_EXC(i_) (16 + (i_))
static const uintptr_t ExceptionVectorTable[EXCEPTION_COUNT]
    __attribute__((section(".vector_table"))) __attribute__((used)) = {
        [0] = (uintptr_t)&StackTop,                // Main Stack Pointer (MSP)
        [1] = (uintptr_t)RTCoreMain,               // Reset
        [2] = (uintptr_t)DefaultExceptionHandler,  // NMI
        [3] = (uintptr_t)DefaultExceptionHandler,  // HardFault
        [4] = (uintptr_t)DefaultExceptionHandler,  // MPU Fault
        [5] = (uintptr_t)DefaultExceptionHandler,  // Bus Fault
        [6] = (uintptr_t)DefaultExceptionHandler,  // Usage Fault
        [11] = (uintptr_t)DefaultExceptionHandler, // SVCall
        [12] = (uintptr_t)DefaultExceptionHandler, // Debug monitor
        [14] = (uintptr_t)DefaultExceptionHandler, // PendSV
        [15] = (uintptr_t)DefaultExceptionHandler, // SysTick

        [INT_TO_EXC(0)... INT_TO_EXC(INTERRUPT_COUNT - 1)] = (uintptr_t)DefaultExceptionHandler};

static _Noreturn void DefaultExceptionHandler(void)
{
    for (;;) {
        // empty.
    }
}

static void PrintBytes(const uint8_t *buf, int start, int end)
{
    int step = (end >= start) ? +1 : -1;

    for (/* nop */; start != end; start += step) {
        Uart_WriteHexBytePoll(buf[start]);
    }
    Uart_WriteHexBytePoll(buf[end]);
}

static void PrintGuid(const uint8_t *guid)
{
    PrintBytes(guid, 3, 0); // 4-byte little-endian word
    Uart_WriteStringPoll("-");
    PrintBytes(guid, 5, 4); // 2-byte little-endian half
    Uart_WriteStringPoll("-");
    PrintBytes(guid, 7, 6); // 2-byte little-endian half
    Uart_WriteStringPoll("-");
    PrintBytes(guid, 8, 9); // 2 bytes
    Uart_WriteStringPoll("-");
    PrintBytes(guid, 10, 15); // 6 bytes
}

static _Noreturn void RTCoreMain(void)
{
	union Analog_data
	{
		uint32_t u32;
		uint8_t u8[4];
	} analog_data;

    // SCB->VTOR = ExceptionVectorTable
    WriteReg32(SCB_BASE, 0x08, (uint32_t)ExceptionVectorTable);

    Uart_Init();
    Uart_WriteStringPoll("--------------------------------\r\n");
    Uart_WriteStringPoll("IntercoreCommsADC_RTApp_MT3620_BareMetal\r\n");
    Uart_WriteStringPoll("App built on: " __DATE__ ", " __TIME__ "\r\n");

	//// ADC Communication
	EnableAdc();

    BufferHeader *outbound, *inbound;
    uint32_t sharedBufSize = 0;
    if (GetIntercoreBuffers(&outbound, &inbound, &sharedBufSize) == -1) {
        for (;;) {
            // empty.
        }
    }

    static const size_t payloadStart = 20;

    for (;;)
	{
        uint8_t buf[256];
        uint32_t dataSize = sizeof(buf);
		uint8_t j = 0;
		uint32_t mV;

        // On success, dataSize is set to the actual number of bytes which were read.
        int r = DequeueData(outbound, inbound, sharedBufSize, buf, &dataSize);

        if (r == -1 || dataSize < payloadStart) 
		{
            continue;
        }

		// For debug prrposes 
        Uart_WriteStringPoll("Received message of ");
        Uart_WriteIntegerPoll(dataSize);
        Uart_WriteStringPoll("bytes:\r\n");

		// Print the Component Id (A7 Core)
        Uart_WriteStringPoll("  Component Id (16 bytes): ");
        PrintGuid(buf);
        Uart_WriteStringPoll("\r\n");

        // Print reserved field as little-endian 4-byte integer.
        Uart_WriteStringPoll("  Reserved (4 bytes): ");
        PrintBytes(buf, 19, 16);
        Uart_WriteStringPoll("\r\n");

        // Print message as hex.
        size_t payloadBytes = dataSize - payloadStart;
        Uart_WriteStringPoll("  Payload (");
        Uart_WriteIntegerPoll(payloadBytes);
        Uart_WriteStringPoll(" bytes as hex): ");

        for (size_t i = payloadStart; i < dataSize; ++i)
		{
            Uart_WriteHexBytePoll(buf[i]);
            if (i != dataSize - 1) {
                Uart_WriteStringPoll(":");
            }
        }
        Uart_WriteStringPoll("\r\n");

        // Print message as text.
        Uart_WriteStringPoll("  Payload (");
        Uart_WriteIntegerPoll(payloadBytes);
        Uart_WriteStringPoll(" bytes as text): ");
        for (size_t i = payloadStart; i < dataSize; ++i) 
		{
            char c[2];
            c[0] = isprint(buf[i]) ? buf[i] : '.';
            c[1] = '\0';
            Uart_WriteStringPoll(c);
        }
        Uart_WriteStringPoll("\r\n");

		// Read ADC channel 0
		analog_data.u32 = ReadAdc(1);
		
		mV = (analog_data.u32 * 2500) / 0xFFF;
		Uart_WriteStringPoll("ADC channel 0: ");
		Uart_WriteIntegerPoll(mV / 1000);
		Uart_WriteStringPoll(".");
		Uart_WriteIntegerWidthPoll(mV % 1000, 3);
		Uart_WriteStringPoll(" V");
		Uart_WriteStringPoll("\r\n");

		j = 0;
		for (int i = payloadStart; i < payloadStart + 4; i++)
		{
			// Put ADC data to buffer
			buf[i] = analog_data.u8[j++];
		}

		// Send buffer to A7 Core
        EnqueueData(inbound, outbound, sharedBufSize, buf, payloadStart + 4);
    }
}

Credits

Night R

Night R

16 projects • 50 followers
R&D Engineer @ IoT Solutions Provider, Robotics Engineer @ SIS Corp., Passionate for Hardware hacking, 12+ years experience in programming..

Comments