Kitty Yeung
Published © CC BY-NC-SA

Arduino 101 - Intel Curie Pattern Matching Dress

A dress with Curie's pattern matching engine on Arduino101 to control the embedded LEDs, which makes constellations show up on the dress.

IntermediateFull instructions provided10 hours16,639

Things used in this project

Hardware components

NeoPixel strip
NeoPixel strip
Could be replaced by individual RGB LEDs.
×1
Arduino 101
Arduino 101
×1
Pushbutton switch 12mm
SparkFun Pushbutton switch 12mm
×1
Resistor 10k ohm
Resistor 10k ohm
×1
Jumper wires (generic)
Jumper wires (generic)
You may need long wires to guide the LEDs from your shoulder to your hand.
×1
9V battery (generic)
9V battery (generic)
×1
9V to Barrel Jack Connector
9V to Barrel Jack Connector
×1
Flora RGB Neopixel LEDs- Pack of 4
Adafruit Flora RGB Neopixel LEDs- Pack of 4
This can be used to replace the Neopixel strip.
×1
Sewable Conductive Thread
Sewable Conductive Thread
Option to replace some wires.
×1

Software apps and online services

Arduino IDE
Arduino IDE

Hand tools and fabrication machines

Hot glue gun (generic)
Hot glue gun (generic)
sewing machine (generic)
Soldering iron (generic)
Soldering iron (generic)

Story

Read more

Schematics

NeoPixel LEDs

It's just connecting the LEDs to the Arduino 101 pins and a button to pin 4 (as described in the code: https://www.arduino.cc/en/Tutorial/Button). The circuit diagram is similar to this Fritzing from Adafruit: https://learn.adafruit.com/adafruit-neopixel-uberguide/basic-connections
I plugged the 9 V battery directly into the barrel jack.

Code

PME_4LED_new.ino

Arduino
This is an updated script from the previous one. It stores the training data. Currently, it is set up with an initialization step. The first series of LEDs shows Red when power is on. Holding the Arduino101 flat with the USB port pointing in the horizontal direction, while pressing the button, allows usage from previous training. These LEDs change to Green then Blue when button is released, indicating system is ready. If the Arduino101 is held with the USB port pointing in a vertical direction, while pressing the button, previous training data is erased. System can be retrained upon releasing of the button.
/*
 * This example demonstrates using the pattern matching engine (CuriePME)
 * to classify streams of accelerometer data from CurieIMU.
 *
 * First, the sketch will prompt you to draw some letters in the air (just
 * imagine you are writing on an invisible whiteboard, using your board as the
 * pen), and the IMU data from these motions is used as training data for the
 * PME. Once training is finished, you can keep drawing letters and the PME
 * will try to guess which letter you are drawing.
 *
 * This example requires a button to be connected to digital pin 4
 * https://www.arduino.cc/en/Tutorial/Button
 *
 * NOTE: For best results, draw big letters, at least 1-2 feet tall.
 *
 * Copyright (c) 2016 Intel Corporation.  All rights reserved.
 * See license notice at end of file.
 */

#include "CurieIMU.h"
#include "CuriePME.h"
#include <CurieSerialFlash.h>
#include <SPI.h>

#include <Adafruit_NeoPixel.h>
#define PINM 6  //// what pin are the NeoPixels connected to?
#define PINC 3
#define PINS 9
#define PINO 5 
Adafruit_NeoPixel stripM = Adafruit_NeoPixel(10, PINM, NEO_GRB + NEO_KHZ800);  /// the strip is 15 pixels long.  You can change this for the number of pixels in your individual strip.
Adafruit_NeoPixel stripS = Adafruit_NeoPixel(10, PINS, NEO_GRB + NEO_KHZ800);
Adafruit_NeoPixel stripC = Adafruit_NeoPixel(10, PINC, NEO_GRB + NEO_KHZ800);
Adafruit_NeoPixel stripO = Adafruit_NeoPixel(10, PINO, NEO_GRB + NEO_KHZ800);

int tr = 0;  //Some variables to hold "color-target" and "color-current" for smoothing...
int tg = 0;
int tb = 0;
int r = 0;
int g = 0;
int b = 0;

int rawX = 0;  /////  to hold values from the Curie's accelerometer
int rawY = 0;
//int rawZ = 0;
float angle = 0.0;


/*  This controls how many times a letter must be drawn during training.
 *  Any higher than 4, and you may not have enough neurons for all 26 letters
 *  of the alphabet. Lower than 4 means less work for you to train a letter,
 *  but the PME may have a harder time classifying that letter. */
const unsigned int trainingReps = 4;

/* Increase this to 'A-Z' if you like-- it just takes a lot longer to train */
const unsigned char trainingStart = 'A';
const unsigned char trainingEnd = 'D';

/* The input pin used to signal when a letter is being drawn- you'll
 * need to make sure a button is attached to this pin */
const unsigned int buttonPin = 4;

/* Sample rate for accelerometer */
const unsigned int sampleRateHZ = 200;

/* No. of bytes that one neuron can hold */
const unsigned int vectorNumBytes = 128;

/* Number of processed samples (1 sample == accel x, y, z)
 * that can fit inside a neuron */
const unsigned int samplesPerVector = (vectorNumBytes / 3);

/* This value is used to convert ASCII characters A-Z
 * into decimal values 1-26, and back again. */
const unsigned int upperStart = 0x40;

const unsigned int sensorBufSize = 2048;
const int IMULow = -32768;
const int IMUHigh = 32767;

const char *filename = "NeurDataDress.dat";

void setup()
{
    Serial.begin(9600);
    //while(!Serial);

    pinMode(buttonPin, INPUT);

    /* Start the IMU (Intertial Measurement Unit) */
    CurieIMU.begin();

    /* Start the PME (Pattern Matching Engine) */
    CuriePME.begin();

    CurieIMU.setAccelerometerRate(sampleRateHZ);
    CurieIMU.setAccelerometerRange(2);

    /* Init. SPI Flash chip */
    if (!SerialFlash.begin(ONBOARD_FLASH_SPI_PORT, ONBOARD_FLASH_CS_PIN)) {
      Serial.println("Unable to access SPI Flash chip");
    }
 
    stripM.begin();  //  intialize neopixel strip
    stripS.begin();
    stripC.begin();
    stripO.begin();
    stripM.show();   // Initialize all pixels to 'off'
    stripS.show();
    stripC.show();
    stripO.show();
    solidM(stripM.Color(255, 0, 0), 50); //Red for ready for input
}

/* This function reads the file saved by the previous example
 * The file contains all the data that was learned, then saved before.
 * Once the network is restored, it is able to classify patterns again without
 * having to be retrained.*/
void restoreNetworkKnowledge ( void )
{
    SerialFlashFile file;
    int32_t fileNeuronCount = 0;

    Intel_PMT::neuronData neuronData;

    // Open the file and write test data
    file = SerialFlash.open(filename);

    CuriePME.beginRestoreMode();
    if (file) {
        // iterate over the network and save the data.
        while(1) {
            Serial.print("Reading Neuron: ");

            uint16_t neuronFields[4];
            file.read( (void*) neuronFields, 8);
            file.read( (void*) neuronData.vector, 128 );

            neuronData.context = neuronFields[0] ;
            neuronData.influence = neuronFields[1] ;
            neuronData.minInfluence = neuronFields[2] ;
            neuronData.category = neuronFields[3];

            if (neuronFields[0] == 0 || neuronFields[0] > 127)
                break;

            fileNeuronCount++;

            // this part just prints each neuron as it is restored,
            // so you can see what is happening.
            Serial.print(fileNeuronCount);
            Serial.print("\n");

            Serial.print( neuronFields[0] );
            Serial.print( "\t");
            Serial.print( neuronFields[1] );
            Serial.print( "\t");
            Serial.print( neuronFields[2] );
            Serial.print( "\t");
            Serial.print( neuronFields[3] );
            Serial.print( "\t");

            Serial.print( neuronData.vector[0] );
            Serial.print( "\t");
            Serial.print( neuronData.vector[1] );
            Serial.print( "\t");
            Serial.print( neuronData.vector[2] );
            
            Serial.print( "\n");
            CuriePME.iterateNeuronsToRestore( neuronData );
        }
    }

    CuriePME.endRestoreMode();
    Serial.print("Knowledge Set Restored. \n");
}

boolean longPress=false;
int startTime=0;
int lastOrientation = - 1; // previous orientation (for comparison)
int lastReading = -1;
boolean lastPress=false;

void loop ()
{
    int orientation = - 1;   // the board's orientation
    String orientationString; // string for printing description of orientation
  
    //  The orientations of the board:
    //  0: flat, processor facing up
    //  1: flat, processor facing down
    //  2: landscape, analog pins down
    //  3: landscape, analog pins up
    //  4: portrait, USB connector up
    //  5: portrait, USB connector down
  
    // read accelerometer:
    int x = CurieIMU.readAccelerometer(X_AXIS);
    int y = CurieIMU.readAccelerometer(Y_AXIS);
    int z = CurieIMU.readAccelerometer(Z_AXIS);

    // calculate the absolute values, to determine the largest
    int absX = abs(x);
    int absY = abs(y);
    int absZ = abs(z);

    if ( (absZ > absX) && (absZ > absY)) {
        // base orientation on Z
        if (z > 0) {
            orientationString = "up";
            orientation = 0;  
        } else {
            orientationString = "down";
            orientation = 1;
        }
    } else if ( (absY > absX) && (absY > absZ)) {
        // base orientation on Y
        if (y > 0) {
            orientationString = "digital pins up";
            orientation = 2;
        } else {
            orientationString = "analog pins up";
            orientation = 3;
        }
    } else {
      // base orientation on X
      if (x < 0) {
            orientationString = "connector up";
            orientation = 4;
      } else {
            orientationString = "connector down";
            orientation = 5;
        }
    }
    // if the orientation has changed, print out a description:
    if (orientation != lastOrientation) {
        Serial.println(orientationString);
        lastOrientation = orientation;
    }

    // if the orientation has changed, print out a description:
    if (orientation != lastOrientation) {
        lastOrientation = orientation;
    }
    int reading = digitalRead(buttonPin);
    if (lastReading != reading) {
      Serial.print("buttonPin=");
      Serial.println(reading);
      lastReading = reading;
    }
    if (reading == HIGH) {
      if (startTime == 0) {
        startTime=millis();
      } else if ((millis() - startTime) >2000) {
        longPress=true;
        if (!lastPress) {
          Serial.println("longPress");
          //green for long press
          solidM(stripM.Color(0, 255, 0), 50);// Green
          lastPress=true;
        }
      }     
    }
    if ( reading == LOW && longPress ) {
        blackout(5);  
        Serial.print("orientation=");
        Serial.print(orientation);
        Serial.print(" SerialFlash.exists(filename)=");
        Serial.println(SerialFlash.exists(filename));
        if (orientation!=4 && SerialFlash.exists(filename)) {
            restoreNetworkKnowledge();
            Serial.print("Training restored.");
       } else {
            trainLetters();
            blackout(5);
            Serial.print("Training complete.");
        }
        Serial.println(" Now, draw some letters (remember to ");
        Serial.println("hold the button) and see if the PME can classify them.");
        solidM(stripM.Color(0, 0, 255), 500); //Blue for ready for matching
        blackout(5);
        //turn off for matching
        while (true) {
            match();
        }
    }
}

void solidM(uint32_t c, uint8_t wait) {  
    for (uint16_t i=0; i < stripM.numPixels(); i++) {
        stripM.setPixelColor(i, c);        //turn every pixel off
    }
    stripM.show();
    delay(wait);
}

void blackout(uint8_t wait) {  
    for (uint16_t i=0; i < stripM.numPixels(); i++) {
        stripM.setPixelColor(i, 0);        //turn every pixel off
    }
    for (uint16_t i=0; i < stripS.numPixels(); i++) {
        stripS.setPixelColor(i, 0);        //turn every pixel off
    }
    for (uint16_t i=0; i < stripC.numPixels(); i++) {
        stripC.setPixelColor(i, 0);        //turn every pixel off
    }
    for (uint16_t i=0; i < stripO.numPixels(); i++) {
        stripO.setPixelColor(i, 0);        //turn every pixel off
    } 
    stripM.show();
    stripS.show();  
    stripC.show();
    stripO.show();
    delay(wait);
}
  
void match()
{
    byte vector[vectorNumBytes];
    unsigned int category;
    char letter;
    char pattern;

    /* Record IMU data while button is being held, and
     * convert it to a suitable vector */
    readVectorFromIMU(vector); 

    /* Use the PME to classify the vector, i.e. return a category
     * from 1-26, representing a letter from A-Z */
    category = CuriePME.classify(vector, vectorNumBytes);

    if (category == CuriePME.noMatch) {
        Serial.println("Don't recognise that one-- try again.");
         
        //theaterChase();
        theaterChaseM(stripM.Color(127, 127, 127), 50);
        theaterChaseS(stripS.Color(127, 127, 127), 50);
        theaterChaseC(stripC.Color(127, 127, 127), 50);
        theaterChaseO(stripO.Color(127, 127, 127), 50);// White
        stripM.show();
        stripS.show();
        stripC.show();
        stripO.show();
        blackout(1);
        // delay(10);
          
    } else {
        letter = category + upperStart;
        pattern = letter;
        if ( pattern == 'A' ) {
            //red
            colorWipeM(stripM.Color(0, 255, 0), 50); // Green
            theaterChaseM(stripM.Color(127, 127, 127), 50); // White
            stripM.show();
        } else if ( pattern == 'B') {
            colorWipeS(stripS.Color(255, 0, 0), 50); // Red
            theaterChaseS(stripS.Color(127, 127, 127), 50); // White
            stripS.show();
        } else if ( pattern == 'C') {
            colorWipeC(stripC.Color(0, 0, 255), 50); // Blue
            theaterChaseC(stripC.Color(127, 127, 127), 50); // White
            stripC.show();
        } else if ( pattern == 'D') {
            colorWipeO(stripO.Color(255, 0, 255), 50); // Blue
            theaterChaseO(stripO.Color(127, 127, 127), 50); // White
            stripO.show();
        }
        Serial.println(letter); 
    }
}

/* Simple "moving average" filter, removes low noise and other small
 * anomalies, with the effect of smoothing out the data stream. */
byte getAverageSample(byte samples[], unsigned int num, unsigned int pos,
                   unsigned int step)
{
    unsigned int ret;
    unsigned int size = step * 2;

    if (pos < (step * 3) || pos > (num * 3) - (step * 3)) {
        ret = samples[pos];
    } else {
        ret = 0;
        pos -= (step * 3);
        for (unsigned int i = 0; i < size; ++i) {
            ret += samples[pos - (3 * i)];
        }

        ret /= size;
    }

    return (byte)ret;
}

/* We need to compress the stream of raw accelerometer data into 128 bytes, so
 * it will fit into a neuron, while preserving as much of the original pattern
 * as possible. Assuming there will typically be 1-2 seconds worth of
 * accelerometer data at 200Hz, we will need to throw away over 90% of it to
 * meet that goal!
 *
 * This is done in 2 ways:
 *
 * 1. Each sample consists of 3 signed 16-bit values (one each for X, Y and Z).
 *    Map each 16 bit value to a range of 0-255 and pack it into a byte,
 *    cutting sample size in half.
 *
 * 2. Undersample. If we are sampling at 200Hz and the button is held for 1.2
 *    seconds, then we'll have ~240 samples. Since we know now that each
 *    sample, once compressed, will occupy 3 of our neuron's 128 bytes
 *    (see #1), then we know we can only fit 42 of those 240 samples into a
 *    single neuron (128 / 3 = 42.666). So if we take (for example) every 5th
 *    sample until we have 42, then we should cover most of the sample window
 *    and have some semblance of the original pattern. */
void undersample(byte samples[], int numSamples, byte vector[])
{
    unsigned int vi = 0;
    unsigned int si = 0;
    unsigned int step = numSamples / samplesPerVector;
    unsigned int remainder = numSamples - (step * samplesPerVector);

    /* Centre sample window */
    samples += (remainder / 2) * 3;
    for (unsigned int i = 0; i < samplesPerVector; ++i) {
        for (unsigned int j = 0; j < 3; ++j) {
            vector[vi + j] = getAverageSample(samples, numSamples, si + j, step);
        }

        si += (step * 3);
        vi += 3;
    }
}

void readVectorFromIMU(byte vector[])
{
    byte accel[sensorBufSize];
    int raw[3];

    unsigned int samples = 0;
    unsigned int i = 0;

    /* Wait until button is pressed */
    while (digitalRead(buttonPin) == LOW);

    /* While button is being held... */
    while (digitalRead(buttonPin) == HIGH) {
        if (CurieIMU.dataReady()) {

            CurieIMU.readAccelerometer(raw[0], raw[1], raw[2]);

            /* Map raw values to 0-255 */
            accel[i] = (byte) map(raw[0], IMULow, IMUHigh, 0, 255);
            accel[i + 1] = (byte) map(raw[1], IMULow, IMUHigh, 0, 255);
            accel[i + 2] = (byte) map(raw[2], IMULow, IMUHigh, 0, 255);

            i += 3;
            ++samples;

            /* If there's not enough room left in the buffers
            * for the next read, then we're done */
            if (i + 3 > sensorBufSize) {
                break;
            }
        }
    }

    undersample(accel, samples, vector);
}

void trainLetter(char letter, unsigned int repeat)
{
    unsigned int i = 0;

    while (i < repeat) {
        byte vector[vectorNumBytes];
        if ( letter == 'A' ) {
            colorWipeM(stripM.Color(0, 255, 0), 50); // Green
            theaterChaseM(stripM.Color(127, 127, 127), 50); // White
            stripM.show();
        } else if ( letter == 'B') {
            colorWipeS(stripS.Color(255, 0, 0), 50); // Red
            theaterChaseS(stripS.Color(127, 127, 127), 50); // White
            stripS.show();
        } else if ( letter == 'C') {
            colorWipeC(stripC.Color(0, 0, 255), 50); // Blue
            theaterChaseC(stripC.Color(127, 127, 127), 50); // White
            stripC.show();
        } else if ( letter == 'D') {
            colorWipeO(stripO.Color(255, 0, 255), 50); // Blue
            theaterChaseO(stripO.Color(127, 127, 127), 50); // White
            stripO.show();
        }
        if (i) Serial.println("And again...");

        readVectorFromIMU(vector);
        CuriePME.learn(vector, vectorNumBytes, letter - upperStart);

        Serial.println("Got it!");
        delay(1000);
        ++i;
    }
}

bool create_if_not_exists (const char *filename, uint32_t fileSize) {
    if (!SerialFlash.exists(filename)) {
        Serial.println("Creating file " + String(filename));
        return SerialFlash.createErasable(filename, fileSize);
    }

    Serial.println("File " + String(filename) + " already exists");
    return true;
}

void saveNetworkKnowledge ( void )
{
//    const char *filename = "NeurData.dat";
    SerialFlashFile file;

    Intel_PMT::neuronData neuronData;
    uint32_t fileSize = 128 * sizeof(neuronData);

    Serial.print( "File Size to save is = ");
    Serial.print( fileSize );
    Serial.print("\n");

    create_if_not_exists( filename, fileSize );
    // Open the file and write test data
    file = SerialFlash.open(filename);
    file.erase();

    CuriePME.beginSaveMode();
    if (file) {
    // iterate over the network and save the data.
        while( uint16_t nCount = CuriePME.iterateNeuronsToSave(neuronData)) {
            if( nCount == 0x7FFF)
            break;

            Serial.print("Saving Neuron: ");
            Serial.print(nCount);
            Serial.print("\n");
            uint16_t neuronFields[4];

            neuronFields[0] = neuronData.context;
            neuronFields[1] = neuronData.influence;
            neuronFields[2] = neuronData.minInfluence;
            neuronFields[3] = neuronData.category;

            file.write( (void*) neuronFields, 8);
            file.write( (void*) neuronData.vector, 128 );
        }
    }

    CuriePME.endSaveMode();
    Serial.print("Knowledge Set Saved. \n");
}

void trainLetters()
{
    for (char i = trainingStart; i <= trainingEnd; ++i) {
        Serial.print("Hold down the button and draw the letter '");
        Serial.print(String(i) + "' in the air. Release the button as soon ");
        Serial.println("as you are done.");

        trainLetter(i, trainingReps);
        Serial.println("OK, finished with this letter.");
        delay(2000);
    }
    // Init. SPI Flash chip
    if (!SerialFlash.begin(ONBOARD_FLASH_SPI_PORT, ONBOARD_FLASH_CS_PIN)) {
      Serial.println("Unable to access SPI Flash chip");
    }
    saveNetworkKnowledge();
}

/*Special light functions from Adafruit Strandtest Example Code
 * Input a value 0 to 255 to get a color value.  Used for rainbow effect above.
 * Theater Chase lights from Adafruit strandtest example code.  This takes whatever the curent RGB value is, and does a "theatre chase" effect with it.
 */
/*Theatre-style crawling lights.*/
void theaterChasePIN(uint8_t p,uint32_t c, uint8_t wait) {
    Adafruit_NeoPixel strip = Adafruit_NeoPixel(10, p, NEO_GRB + NEO_KHZ800);
    for (int j=0; j<10; j++) {  //do 10 cycles of chasing
        for (int q=0; q < 3; q++) {
            for (uint16_t i=0; i < strip.numPixels(); i=i+3) {
                strip.setPixelColor(i+q, c);    //turn every third pixel on
            }
            strip.show();
            delay(wait);
            for (uint16_t i=0; i < strip.numPixels(); i=i+3) {
                strip.setPixelColor(i+q, 0);        //turn every third pixel off
            }
        }
    }
}

/* Fill the dots one after the other with a color*/
void colorWipePIN(uint8_t p, uint32_t c, uint8_t wait) {
    Adafruit_NeoPixel strip = Adafruit_NeoPixel(10, p, NEO_GRB + NEO_KHZ800);
    for(uint16_t i=0; i<strip.numPixels(); i++) {
        strip.setPixelColor(i, c);
        strip.show();
        delay(wait);
    }
}

/*Special light functions from Adafruit Strandtest Example Code
 * Input a value 0 to 255 to get a color value.  Used for rainbow effect above.
 * Theater Chase lights from Adafruit strandtest example code.  This takes whatever the curent RGB value is, and does a "theatre chase" effect with it.
 */
void theaterChaseM(uint32_t c, uint8_t wait) {
    for (int j=0; j<10; j++) {  //do 10 cycles of chasing
        for (int q=0; q < 3; q++) {
            for (uint16_t i=0; i < stripM.numPixels(); i=i+3) {
                stripM.setPixelColor(i+q, c);    //turn every third pixel on
            }
            stripM.show();
            delay(wait);
            for (uint16_t i=0; i < stripM.numPixels(); i=i+3) {
                stripM.setPixelColor(i+q, 0);        //turn every third pixel off
            }
        }
    }
}

/* Theatre-style crawling lights. */
void theaterChaseS(uint32_t c, uint8_t wait) {
    for (int j=0; j<10; j++) {  //do 10 cycles of chasing
        for (int q=0; q < 3; q++) {
            for (uint16_t i=0; i < stripS.numPixels(); i=i+3) {
                stripS.setPixelColor(i+q, c);    //turn every third pixel on
            }
            stripS.show();
            delay(wait);
            for (uint16_t i=0; i < stripS.numPixels(); i=i+3) {
                stripS.setPixelColor(i+q, 0);        //turn every third pixel off
            }
        }
    }
}

/*Theatre-style crawling lights.*/
void theaterChaseC(uint32_t c, uint8_t wait) {
    for (int j=0; j<10; j++) {  //do 10 cycles of chasing
        for (int q=0; q < 3; q++) {
            for (uint16_t i=0; i < stripC.numPixels(); i=i+3) {
                stripC.setPixelColor(i+q, c);    //turn every third pixel on
            }
            stripC.show();
            delay(wait);

            for (uint16_t i=0; i < stripC.numPixels(); i=i+3) {
                stripC.setPixelColor(i+q, 0);        //turn every third pixel off
            }
        }
    }
}

/*Theatre-style crawling lights.*/
void theaterChaseO(uint32_t c, uint8_t wait) {
    for (int j=0; j<10; j++) {  //do 10 cycles of chasing
        for (int q=0; q < 3; q++) {
            for (uint16_t i=0; i < stripO.numPixels(); i=i+3) {
                stripO.setPixelColor(i+q, c);    //turn every third pixel on
            }
            stripO.show();
            delay(wait);
            for (uint16_t i=0; i < stripO.numPixels(); i=i+3) {
                stripO.setPixelColor(i+q, 0);        //turn every third pixel off
            }
        }
    }
}

/* Fill the dots one after the other with a color*/
void colorWipeM(uint32_t c, uint8_t wait) {
    for(uint16_t i=0; i<stripM.numPixels(); i++) {
        stripM.setPixelColor(i, c);
        stripM.show();
        delay(wait);
    }
}

/* Fill the dots one after the other with a color*/
void colorWipeS(uint32_t c, uint8_t wait) {
    for(uint16_t i=0; i<stripS.numPixels(); i++) {
        stripS.setPixelColor(i, c);
        stripS.show();
        delay(wait);
    }
}

/* Fill the dots one after the other with a color*/
void colorWipeC(uint32_t c, uint8_t wait) {
    for(uint16_t i=0; i<stripC.numPixels(); i++) {
        stripC.setPixelColor(i, c);
        stripC.show();
        delay(wait);
    }
}

/* Fill the dots one after the other with a color*/
void colorWipeO(uint32_t c, uint8_t wait) {
    for(uint16_t i=0; i<stripO.numPixels(); i++) {
        stripO.setPixelColor(i, c);
        stripO.show();
        delay(wait);
    }
}
/*
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

PME_LED

Arduino
This is using the Curie PME to control LEDs. It's basically a combination of the Draw in the Air PME code and the Adafruit NeoPixel example code. This code is not exactly what I used (which is a bit complex) as I doubt you'll make the exact same kind of constellation arrangement. Rather, here is a generic code which you can modify to personalize your need, e.g. you can change how to distribute the pins for different LED strips. I may update it with an improved code later.
/*
 * This example demonstrates using the pattern matching engine (CuriePME)
 * to classify streams of accelerometer data from CurieIMU.The code is a modification of the Draw in the Air example:
 * https://github.com/01org/Intel-Pattern-Matching-Technology
 *
 * First, the sketch will prompt you to draw patterns in the air (just
 * imagine you are writing on an invisible whiteboard, using your board as the
 * pen), and the IMU data from these motions is used as training data for the
 * PME. Once training is finished, you can keep drawing letters and the PME
 * will try to guess which letter you are drawing.
 *
 * This example requires a button to be connected to digital pin 4
 * https://www.arduino.cc/en/Tutorial/Button
 *
 * NOTE: For best results, draw big letters, at least 1-2 feet tall.
 *
 * Copyright (c) 2016 Intel Corporation.  All rights reserved.
 * See license notice at end of file.
 */

#include "CurieIMU.h"
#include "CuriePME.h"

#include <Adafruit_NeoPixel.h>
#define PIN 6  //// what pin are the NeoPixels connected to?
Adafruit_NeoPixel strip = Adafruit_NeoPixel(54, PIN, NEO_GRB + NEO_KHZ800);  /// the strip is 15 pixels long.  You can change this for the number of pixels in your individual strip.

int tr = 0;  //Some variables to hold "color-target" and "color-current" for smoothing...
int tg = 0;
int tb = 0;
int r = 0;
int g = 0;
int b = 0;

int rawX = 0;  /////  to hold values from the Curie's accelerometer
int rawY = 0;
//int rawZ = 0;
float angle = 0.0;


/*  This controls how many times a letter must be drawn during training.
 *  Any higher than 4, and you may not have enough neurons for all 26 letters
 *  of the alphabet. Lower than 4 means less work for you to train a letter,
 *  but the PME may have a harder time classifying that letter. */
const unsigned int trainingReps = 4;

/* Increase this to 'A-Z' if you like-- it just takes a lot longer to train */
const unsigned char trainingStart = 'A';
const unsigned char trainingEnd = 'D';

/* The input pin used to signal when a letter is being drawn- you'll
 * need to make sure a button is attached to this pin */
const unsigned int buttonPin = 4;

/* Sample rate for accelerometer */
const unsigned int sampleRateHZ = 200;

/* No. of bytes that one neuron can hold */
const unsigned int vectorNumBytes = 128;

/* Number of processed samples (1 sample == accel x, y, z)
 * that can fit inside a neuron */
const unsigned int samplesPerVector = (vectorNumBytes / 3);

/* This value is used to convert ASCII characters A-Z
 * into decimal values 1-26, and back again. */
const unsigned int upperStart = 0x40;

const unsigned int sensorBufSize = 2048;
const int IMULow = -32768;
const int IMUHigh = 32767;

void setup()
{
    Serial.begin(9600);
   // while(!Serial);

    pinMode(buttonPin, INPUT);

    /* Start the IMU (Intertial Measurement Unit) */
    CurieIMU.begin();

    /* Start the PME (Pattern Matching Engine) */
    CuriePME.begin();

    CurieIMU.setAccelerometerRate(sampleRateHZ);
    CurieIMU.setAccelerometerRange(2);

    trainLetters();
    //Serial.println("Training complete. Now, draw some letters (remember to ");
   // Serial.println("hold the button) and see if the PME can classify them.");
    
  strip.begin();  //  intialize neopixel strip
  strip.show();   // Initialize all pixels to 'off'
}

void loop ()
{
  
/// these functions are written out at the bottom of the sketch.  
Serial.println("Training complete. Now, draw some letters (remember to ");
Serial.println("hold the button) and see if the PME can classify them.");
    
  
   byte vector[vectorNumBytes];
    unsigned int category;
    char letter;
    char pattern;

    /* Record IMU data while button is being held, and
     * convert it to a suitable vector */
    readVectorFromIMU(vector); 

    /* Use the PME to classify the vector, i.e. return a category
     * from 1-26, representing a letter from A-Z */
    category = CuriePME.classify(vector, vectorNumBytes);

   if (category == CuriePME.noMatch) {
       Serial.println("Don't recognise that one-- try again.");
         
        //theaterChase();
 theaterChase(strip.Color(127, 127, 127), 50); // White
          strip.show();
        // delay(10);
          
    } else {
       letter = category + upperStart;
       
              
        pattern = letter;
       if ( pattern == 'A' ) {
         //red
  colorWipe(strip.Color(0, 255, 0), 50); // Green
  theaterChase(strip.Color(127, 127, 127), 50); // White
          strip.show();
  
       } else if ( pattern == 'B') {
  colorWipe(strip.Color(255, 0, 0), 50); // Red
  theaterChase(strip.Color(127, 127, 127), 50); // White
          strip.show();
        
        } else if ( pattern == 'C') {
  colorWipe(strip.Color(0, 0, 255), 50); // Blue
  theaterChase(strip.Color(127, 127, 127), 50); // White
          strip.show();
        
        } else if ( pattern == 'D') {
   colorWipe(strip.Color(255, 0, 255), 50); // Blue
   theaterChase(strip.Color(127, 127, 127), 50); // White
          strip.show();
        
        }
Serial.println(letter); 
   
       
       
   }
          
 
  
}

/* Simple "moving average" filter, removes low noise and other small
 * anomalies, with the effect of smoothing out the data stream. */
byte getAverageSample(byte samples[], unsigned int num, unsigned int pos,
                   unsigned int step)
{
    unsigned int ret;
    unsigned int size = step * 2;

    if (pos < (step * 3) || pos > (num * 3) - (step * 3)) {
        ret = samples[pos];
    } else {
        ret = 0;
        pos -= (step * 3);
        for (unsigned int i = 0; i < size; ++i) {
            ret += samples[pos - (3 * i)];
        }

        ret /= size;
    }

    return (byte)ret;
}

/* We need to compress the stream of raw accelerometer data into 128 bytes, so
 * it will fit into a neuron, while preserving as much of the original pattern
 * as possible. Assuming there will typically be 1-2 seconds worth of
 * accelerometer data at 200Hz, we will need to throw away over 90% of it to
 * meet that goal!
 *
 * This is done in 2 ways:
 *
 * 1. Each sample consists of 3 signed 16-bit values (one each for X, Y and Z).
 *    Map each 16 bit value to a range of 0-255 and pack it into a byte,
 *    cutting sample size in half.
 *
 * 2. Undersample. If we are sampling at 200Hz and the button is held for 1.2
 *    seconds, then we'll have ~240 samples. Since we know now that each
 *    sample, once compressed, will occupy 3 of our neuron's 128 bytes
 *    (see #1), then we know we can only fit 42 of those 240 samples into a
 *    single neuron (128 / 3 = 42.666). So if we take (for example) every 5th
 *    sample until we have 42, then we should cover most of the sample window
 *    and have some semblance of the original pattern. */
void undersample(byte samples[], int numSamples, byte vector[])
{
    unsigned int vi = 0;
    unsigned int si = 0;
    unsigned int step = numSamples / samplesPerVector;
    unsigned int remainder = numSamples - (step * samplesPerVector);

    /* Centre sample window */
    samples += (remainder / 2) * 3;
    for (unsigned int i = 0; i < samplesPerVector; ++i) {
        for (unsigned int j = 0; j < 3; ++j) {
            vector[vi + j] = getAverageSample(samples, numSamples, si + j, step);
        }

        si += (step * 3);
        vi += 3;
    }
}

void readVectorFromIMU(byte vector[])
{
    byte accel[sensorBufSize];
    int raw[3];

    unsigned int samples = 0;
    unsigned int i = 0;

    /* Wait until button is pressed */
    while (digitalRead(buttonPin) == LOW);

    /* While button is being held... */
    while (digitalRead(buttonPin) == HIGH) {
        if (CurieIMU.dataReady()) {

            CurieIMU.readAccelerometer(raw[0], raw[1], raw[2]);

            /* Map raw values to 0-255 */
            accel[i] = (byte) map(raw[0], IMULow, IMUHigh, 0, 255);
            accel[i + 1] = (byte) map(raw[1], IMULow, IMUHigh, 0, 255);
            accel[i + 2] = (byte) map(raw[2], IMULow, IMUHigh, 0, 255);

            i += 3;
            ++samples;

            /* If there's not enough room left in the buffers
            * for the next read, then we're done */
            if (i + 3 > sensorBufSize) {
                break;
            }
        }
    }

    undersample(accel, samples, vector);
}

void trainLetter(char letter, unsigned int repeat)
{
    unsigned int i = 0;

    while (i < repeat) {
        byte vector[vectorNumBytes];

        if (i) Serial.println("And again...");

        readVectorFromIMU(vector);
        CuriePME.learn(vector, vectorNumBytes, letter - upperStart);

        Serial.println("Got it!");
        delay(1000);
        ++i;
    }
}

void trainLetters()
{
    for (char i = trainingStart; i <= trainingEnd; ++i) {
        Serial.print("Hold down the button and draw the letter '");
        Serial.print(String(i) + "' in the air. Release the button as soon ");
        Serial.println("as you are done.");

        trainLetter(i, trainingReps);
        Serial.println("OK, finished with this letter.");
        delay(2000);
    }
}

///////////////Special light functions from Adafruit Strandtest Example Code

// Rainbow!  Note- this function blocks new position inputs until it's finished.
void rainbowCycle(uint8_t wait) {
  uint16_t i, j;

  for(j=0; j<256*5; j++) { // 5 cycles of all colors on wheel
    for(i=0; i< strip.numPixels(); i++) {
      strip.setPixelColor(i, Wheel(((i * 256 / strip.numPixels()) + j) & 255));
    }
    strip.show();
    delay(wait);
  }
}

// Input a value 0 to 255 to get a color value.  Used for rainbow effect above.
// The colours are a transition r - g - b - back to r.
uint32_t Wheel(byte WheelPos) {
  WheelPos = 255 - WheelPos;
  if(WheelPos < 85) {
    return strip.Color(255 - WheelPos * 3, 0, WheelPos * 3);
  }
  if(WheelPos < 170) {
    WheelPos -= 85;
    return strip.Color(0, WheelPos * 3, 255 - WheelPos * 3);
  }
  WheelPos -= 170;
  return strip.Color(WheelPos * 3, 255 - WheelPos * 3, 0);
}

    //////Theater Chase lights from Adafruit strandtest example code.  This takes whatever the curent RGB value is, and does a "theatre chase" effect with it.
//Theatre-style crawling lights.
void theaterChase(uint32_t c, uint8_t wait) {
  for (int j=0; j<10; j++) {  //do 10 cycles of chasing
    for (int q=0; q < 3; q++) {
      for (uint16_t i=0; i < strip.numPixels(); i=i+3) {
        strip.setPixelColor(i+q, c);    //turn every third pixel on
      }
      strip.show();

      delay(wait);

      for (uint16_t i=0; i < strip.numPixels(); i=i+3) {
        strip.setPixelColor(i+q, 0);        //turn every third pixel off
      }
    }
  }
}
// Fill the dots one after the other with a color
void colorWipe(uint32_t c, uint8_t wait) {
  for(uint16_t i=0; i<strip.numPixels(); i++) {
    strip.setPixelColor(i, c);
    strip.show();
    delay(wait);
  }
}
//Theatre-style crawling lights with rainbow effect
void theaterChaseRainbow(uint8_t wait) {
  for (int j=0; j < 256; j++) {     // cycle all 256 colors in the wheel
    for (int q=0; q < 3; q++) {
      for (uint16_t i=0; i < strip.numPixels(); i=i+3) {
        strip.setPixelColor(i+q, Wheel( (i+j) % 255));    //turn every third pixel on
      }
      strip.show();

      delay(wait);

      for (uint16_t i=0; i < strip.numPixels(); i=i+3) {
        strip.setPixelColor(i+q, 0);        //turn every third pixel off
      }
    }
  }
}

/*
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

Credits

Kitty Yeung
19 projects • 186 followers
Physicist/Artist/Musician/Fashion Designer/Engineer www.kittyyeung.com

Comments