In this project, we build a security alarm using a laser detection system, a laser receiver sensor, a buzzer and an RFID-RC522 module, all controlled by an Arduino. The goal is to create a system that can detect the interruption of a laser beam and trigger an audible alarm, as well as allowing the arming and disarming of the alarm using a specific RFID card.
Project Operation:Laser Detection System:
- The system relies on a constant laser beam aimed at a laser receiver sensor. This sensor is configured to detect the presence or absence of the laser beam. Under normal conditions, the laser reaches the sensor and the system recognizes this condition as a “safe” state.
- Laser Detection System:The system relies on a constant laser beam aimed at a laser receiver sensor. This sensor is configured to detect the presence or absence of the laser beam. Under normal conditions, the laser reaches the sensor and the system recognizes this condition as a “safe” state.
Alarm Activation:
- When the laser beam is interrupted (for example, by a person passing through the beam), the receiving sensor detects the absence of the laser. This change of state is detected by the Arduino, which in turn activates a buzzer to emit an audible alarm. This mechanism acts as a security barrier, alerting of an intrusion or unauthorized access.
- Alarm Activation:When the laser beam is interrupted (for example, by a person passing through the beam), the receiving sensor detects the absence of the laser. This change of state is detected by the Arduino, which in turn activates a buzzer to emit an audible alarm. This mechanism acts as a security barrier, alerting of an intrusion or unauthorized access.
Arming and Disarming Control with RFID:
- The project includes an RFID-RC522 module that allows the alarm to be armed and disarmed using a specific RFID card. By presenting the authorized card, the system switches between armed and disarmed states. This means that, when the alarm is armed, any interruption of the laser beam will activate the buzzer. When disarming the alarm, the system will not react to beam interruptions, avoiding false alarms.
- Arming and Disarming Control with RFID:The project includes an RFID-RC522 module that allows the alarm to be armed and disarmed using a specific RFID card. By presenting the authorized card, the system switches between armed and disarmed states. This means that, when the alarm is armed, any interruption of the laser beam will activate the buzzer. When disarming the alarm, the system will not react to beam interruptions, avoiding false alarms.
Alarm Status Indicator:
- In addition to the buzzer, a laser connected to the Arduino indicates the alarm status. This laser turns on when the alarm is armed and turns off when the alarm is disarmed, providing a visual indication of the system status.
- Alarm Status Indicator:In addition to the buzzer, a laser connected to the Arduino indicates the alarm status. This laser turns on when the alarm is armed and turns off when the alarm is disarmed, providing a visual indication of the system status.
Reading and Displaying RFID Card UID:
- Each time an RFID card is brought close to the module, the system reads its UID (Unique Identifier) and displays it on the serial monitor. This allows verification of whether the presented card is the one authorized to control the alarm or not. Even if the card is not authorized, the UID is displayed to facilitate access monitoring and control.
- Reading and Displaying RFID Card UID:Each time an RFID card is brought close to the module, the system reads its UID (Unique Identifier) and displays it on the serial monitor. This allows verification of whether the presented card is the one authorized to control the alarm or not. Even if the card is not authorized, the UID is displayed to facilitate access monitoring and control.
This laser alarm system can be used in a variety of security applications, such as protecting entrances, windows, or restricted areas. In addition, the project is easily expandable; multiple laser sensors can be added to cover a larger area, or more functionalities can be incorporated such as SMS alerts, integration with home automation systems, or even remote monitoring via the Internet.
With this project, you not only learn how to work with components like laser sensors, RFID modules, and Arduino, but you also get a hands-on introduction to security and access control systems. It's a great way to explore the intersection between hardware and software, and how the two can be combined to create practical, effective real-world solutions.
Arduino Nano
The Arduino Nano is a small, full-featured, breadboard-compatible board based on the ATmega328 (Arduino Nano 3.x). It has more or less the same functionality as the Arduino Duemilanove, but in a different package. It only lacks a DC power connector and is powered by a Mini-B USB cable instead of a standard one.
A socket for arduino
Dupont cables female male
Module Laser ky-008
This module specially designed for Arduino emits easily, quickly and accurately a laser beam produced by this component
It is a Laser Emitting Diode that operates at 5V and emits at a wavelength of 650nm.
Technical characteristics:
Working voltage: 5VWavelength: 650nmPower 5 mWColor: RedMaterial: PCBDimensions: 2.3×1.5×0.9cm
Laser Receiver Module
Description
Detecting the light beam of a laser pointer will now be easier with the help of this sensor.
When light is focused on the sensor, it changes the voltage at its output.
It can be used together with the laser module to build counting systems, intrusion detection, remote data transmission.
TECHNICAL SPECIFICATIONS
- Operating voltage: 5V DC
- Salida digital TTL
- Output high level (5V) when receiving laser signal
- Low level output (0V) when no laser signal is received
Rfid Module Rc522 13.56mhz Card And Keychain ArduinoThe module uses 3.3V as a supply voltage and is controlled via the SPI protocol, making it compatible with almost any microcontroller, Arduino or development board.The RC522 uses an advanced modulation and demodulation system for all types of 13.56Mhz passive devices. The device handles ISO14443A and supports Quick CRYPTO1 and MIFARE encryption algorithms.The RC522 MF circuit is used for 13.56Mhz wireless communication to write or read data for low power, low cost and small size applications. Ideal for portable devices or cards.Features Model: MF522-EDOperating current: 13-26mA at 3.3VStandby current: 10-13mA at 3.3VSleep-mode current: <80µAPeak current: 30mAOperating frequency: 13.56MhzReading distance: 0 to 60mmCommunication protocol: SPIMaximum data rate: 10Mbit/sDimensions: 40 x 60 mmOperating temperature: -20 to 80ºCOperating humidity: 5%-95%Maximum SPI speed: 10Mbit/s
Descargar PCB –> pcb ardunano
Circuit
Comments
Please log in or sign up to comment.