// Modified code by Christian Suryanto, from (c) 2019 Shajeeb TM
// HAZI TECH
// Updated by Christian Suryanto
//
#include <arduinoFFT.h>
#include <MD_MAX72xx.h>
#include <SPI.h>
#include <EEPROM.h>
#define HARDWARE_TYPE MD_MAX72XX::FC16_HW // Set display type so that MD_MAX72xx library treets it properly
#define CLK_PIN 13 // Clock pin to communicate with display
#define DATA_PIN 11 // Data pin to communicate with display
#define CS_PIN 10 // Control pin to communicate with display
#define SAMPLES 64 // Must be a power of 2
#define MAX_DEVICES 4 // Total number display modules
#define xres 32 // Total number of columns in the display, must be <= SAMPLES/2
#define yres 8 // Total number of rows in the display
#define PREV 0xFF02FD // address is FFA25D but 0x is added because this is how the arduino is told that it is HEXADECIMAL.
#define NEXT 0xFFC23D // control stop code
#define PWR 0xFFA25D // control Power
int audio_response = 35; // put a value between 10 and 80. Smaller the number, higher the audio response
double vReal[SAMPLES];
//double vReal2[SAMPLES];
double vImag[SAMPLES];
char data_avgs[xres];
int yvalue;
int displaycolumn , displayvalue;
int peaks[xres];
const int buttonPin = 6; // the number of the pushbutton pin
int state = HIGH; // the current reading from the input pin
int previousState = LOW; // the previous reading from the input pin
int displaymode;
unsigned long lastDebounceTime = 0; // the last time the output pin was toggled
unsigned long debounceDelay = 50; // the debounce time; increase if the output flickers
int MY_ARRAY[]={0, 128, 192, 224, 240, 248, 252, 254, 255}; // default = standard pattern
//int MY_MODE_1[]={0, 128, 192, 224, 240, 248, 252, 254, 255}; // standard pattern
//int MY_MODE_2[]={0, 128, 64, 32, 16, 8, 4, 2, 1}; // only peak pattern
//int MY_MODE_3[]={0, 128, 192, 160, 144, 136, 132, 130, 129}; // only peak + bottom point
//int MY_MODE_4[]={0, 128, 192, 160, 208, 232, 244, 250, 253}; // one gap in the top , 3rd light onwards
bool EQ_ON = true; // set to false to disable eq
byte eq1[32] = {40, 45, 50, 60, 65, 70, 75, 95,
110, 110, 110, 110, 110, 110, 110, 110,
130, 130, 130, 130, 130, 130, 130, 130,
145, 155, 170, 180, 215, 220, 245, 255
};
byte eq2[11] = {40, 70, 75, 110, 110, 140, 145, 220, 220, 230, 250};
MD_MAX72XX mx = MD_MAX72XX(HARDWARE_TYPE, CS_PIN, MAX_DEVICES); // display object
arduinoFFT FFT = arduinoFFT(); // FFT object
void setup() {
EEPROM.update(1,1); //(memory address, value), RUN THIS FOR THE FIRST TIME
displaymode = EEPROM.read(1);
//displaymode = 1;
ADCSRA = 0b11100101; // set ADC to free running mode and set pre-scalar to 32 (0xe5)
ADMUX = 0b00000000; // use pin A0 and external voltage reference
pinMode(buttonPin, INPUT);
mx.begin(); // initialize display
mx.control(MD_MAX72XX::INTENSITY, 0); // set LED intensity
delay(50); // wait to get reference voltage stabilized
}
void loop() {
// ++ Sampling
int numData;
double rSum;
for(int i=0; i<SAMPLES; i++)
{
while(!(ADCSRA & 0x10)); // wait for ADC to complete current conversion ie ADIF bit set
ADCSRA = 0b11110101 ; // clear ADIF bit so that ADC can do next operation (0xf5)
int value = ADC - 512 ; // Read from ADC and subtract DC offset caused value
value = value / 8;
vReal[i]= value; // Copy to bins after compressing
vImag[i] = 0;
}
// -- Sampling
//++ FFT
FFT.Windowing(vReal, SAMPLES, FFT_WIN_TYP_HAMMING, FFT_FORWARD);
FFT.Compute(vReal, vImag, SAMPLES, FFT_FORWARD);
FFT.ComplexToMagnitude(vReal, vImag, SAMPLES);
// -- FFT
int step = (SAMPLES)/xres;
// re-mapping data - Customize by Christian Suryanto ///
switch (displaymode)
{
case 1 :
{
numData = 32;
data_avgs[0] = (vReal[0] + vReal[0])/2;
data_avgs[1] = (vReal[1] + vReal[63])/2;
data_avgs[2] = (vReal[2] + vReal[62])/2;
data_avgs[3] = (vReal[3] + vReal[61])/2;
data_avgs[4] = (vReal[4] + vReal[60])/2;
data_avgs[5] = (vReal[5] + vReal[59])/2;
data_avgs[6] = (vReal[6] + vReal[58])/2;
data_avgs[7] = (vReal[7] + vReal[57])/2;
data_avgs[8] = (vReal[8] + vReal[56])/2;
data_avgs[9] = (vReal[9] + vReal[55])/2;
data_avgs[10] = (vReal[10] + vReal[54])/2;
data_avgs[11] = (vReal[11] + vReal[53])/2;
data_avgs[12] = (vReal[12] + vReal[52])/2;
data_avgs[13] = (vReal[13] + vReal[51])/2;
data_avgs[14] = (vReal[14] + vReal[50])/2;
data_avgs[15] = (vReal[15] + vReal[49])/2;
data_avgs[16] = (vReal[16] + vReal[48])/2;
data_avgs[17] = (vReal[17] + vReal[47])/2;
data_avgs[18] = (vReal[18] + vReal[46])/2;
data_avgs[19] = (vReal[19] + vReal[45])/2;
data_avgs[20] = (vReal[20] + vReal[44])/2;
data_avgs[21] = (vReal[21] + vReal[43])/2;
data_avgs[22] = (vReal[22] + vReal[42])/2;
data_avgs[23] = (vReal[23] + vReal[41])/2;
data_avgs[24] = (vReal[24] + vReal[40])/2;
data_avgs[25] = (vReal[25] + vReal[39])/2;
data_avgs[26] = (vReal[26] + vReal[38])/2;
data_avgs[27] = (vReal[27] + vReal[37])/2;
data_avgs[28] = (vReal[28] + vReal[36])/2;
data_avgs[29] = (vReal[29] + vReal[35])/2;
data_avgs[30] = (vReal[30] + vReal[34])/2;
data_avgs[31] = (vReal[31] + vReal[33])/2;
}
break;
case 2 :
{
numData = 11;
data_avgs[0] = (vReal[0] + vReal[0])/2;
data_avgs[1] = (vReal[0] + vReal[0] + vReal[1] + vReal[63]) / 4;
data_avgs[2] = ( vReal[1] + vReal[63] + vReal[2] + vReal[62] + vReal[3] + vReal[61])/6;
data_avgs[3] = (vReal[2] + vReal[62] + vReal[3] + vReal[61] + vReal[4] + vReal[60])/6;
data_avgs[4] = (vReal[5] + vReal[59] + vReal[6] + vReal[58] + vReal[7] + vReal[57])/6;
data_avgs[5] = (vReal[8] + vReal[56] + vReal[9] + vReal[55] + vReal[10] + vReal[54] + vReal[11] + vReal[53])/8;
data_avgs[6] = (vReal[12] + vReal[52] + vReal[13] + vReal[51] + vReal[14] + vReal[50] + vReal[15] + vReal[49])/8;
data_avgs[7] = (vReal[16] + vReal[48] + vReal[17] + vReal[47] + vReal[18] + vReal[46])/6;
data_avgs[8] = (vReal[19] + vReal[45] + vReal[20] + vReal[44] + vReal[21] + vReal[43] + vReal[22] + vReal[42])/8;
data_avgs[9] = (vReal[23] + vReal[41] + vReal[24] + vReal[40] + vReal[25] + vReal[39] + vReal[26] + vReal[38] + vReal[27] + vReal[37])/10;
data_avgs[10] = (vReal[28] + vReal[36] + vReal[29] + vReal[35] + vReal[30] + vReal[34] + vReal[31] + vReal[33])/8;
}
break;
}
// re-mapping data - Customize by Christian Suryanto ///
for(int i=0; i<numData; i++)
{
data_avgs[i] = data_avgs[i] / 2;
if (EQ_ON)
switch (displaymode)
{
case 1 : data_avgs[i] = (data_avgs[i]) * (float)(eq1[i]) / 100; //apply eq filter
break;
case 2 : data_avgs[i] = (data_avgs[i]) * (float)(eq2[i]) / 100; //apply eq filter
break;
}
data_avgs[i] = constrain(data_avgs[i],0,audio_response); // set max & min values for buckets
data_avgs[i] = map(data_avgs[i], 0, audio_response, 0, yres); // remap averaged values to yres
yvalue=data_avgs[i];
peaks[i] = peaks[i]-1; // decay by one light
if (yvalue > peaks[i])
peaks[i] = yvalue ;
yvalue = peaks[i];
displayvalue=MY_ARRAY[yvalue];
switch (displaymode)
{
case 1:
{
displaycolumn=31-i;
mx.setColumn(displaycolumn, displayvalue); // for left to right
}
break;
case 2:
{
displaycolumn=31-(3*i);
mx.setColumn(displaycolumn-1, displayvalue); // for left to right
mx.setColumn(displaycolumn, displayvalue); // for left to right
}
break;
}
}
// -- send to display according measured value
displayModeChange (); // check if button pressed to change display mode
}
void displayModeChange() {
int reading = digitalRead(buttonPin);
if (reading == HIGH && previousState == LOW && millis() - lastDebounceTime > debounceDelay) // works only when pressed
{
switch (displaymode)
{
case 1: // move from mode 1 to 2
displaymode = 2;
mx.clear();
delay(200);
EEPROM.update(1,2);
break;
case 2: // move from mode 2 to 3
displaymode = 1;
mx.clear();
delay(200);
EEPROM.update(1,1);
break;
}
lastDebounceTime = millis();
}
previousState = reading;
}
Comments
Please log in or sign up to comment.