Control tool for testing and light show by the DMX-512 protocol, ideal for quick tests on fixed or temporary installations of lighting. This project arises from the need to have a portable system for rapid testing in lighting installations, without the need to install lighting consoles, interfaces or computers in environments outside, hostile or difficult to access.
Based on:
Hardware v0.4- Supports Firmware v0.9 - v1.3
- 4x20 LCD with backlight and contrast controlled by software
- Power from USB, batteries or external power supply
- Navigation keypad
- 4x4 keypad
- Analog control potentiometer
- Switch on / off (not applicable to USB power)
- DMX output from terminal block, XLR 3-pin and 5-pin XLR
- Output status LEDs DMX
- Simulation in Proteus V7.7 SP2
- Schematic and PCB in Proteus v8.0 SP1
Schematic
PCB
Simulator
We started the construction ...
We use a phenolic plate one face time, we reinforce the copper sandpaper water, thinner circularly
With Proteus send files to print a pre-press acetate negative (there is a PDF with the file)
Use and method photosensitive film
We use a paper laminator film to adhere perfectly pcb
Add a little water between the plate and acetate so that it does not move and apply UV light
Apply the ferric chloride are clean and ready
We perforate plates
Soldered components
Stripped to the potentiometer guide
Phenolic drilled plate to put the potentiometer
We turned the knob and pin soldered to the pads
In the case of the girl plate, putting them headers weld the top, above the pins cut with sandpaper and water removed the excess
We add tape double tape to attach the keyboard to the plate
Here we encounter a detail, headers clogged with the flex of the keyboard, the cut (we consider for the next version)
Weld the headers that are under the keyboard and bend backward to connect the keyboard laterally
We put in place the keyboard on the LCD board, here's a detail, the base of the MAX485 am very attached to the keyboard, we force a little (we consider in the next version)
We add to Arduino Mega some tape to the USB port to prevent a short circuit between tracks
All mounted components
We load the firmware on the Arduino
Firmware v1.2
- Supports Hardware v0.3 - v0.4
- Navigation from cursor easily accessible and intuitive
- Fast Inserting values from the keypad
- Insert values from analog potentiometer
- Memory Banks store 8 DMX universes
- Reading from the EEPROM to start DMX universe preselected
- Selection of memory options to start
- DMX Control Unitary, selects a specific channel, and shows the values of the previous channels and next
- Matrix Control DMX shows a 3 x 5 matrix with the values of the channels shown
- Chaser DMX Control allows sequence selected channels, with a selected time
- DMX Sequencer allows sequencing between universes stored in the EEPROM memory with a selected time
- Multiply DMX Control allows multiplying values fill the selected channels
- Function to locate luminaire from the selected channel
- Quick access to memory options
- Memory options Save, Load, Clear, Clear All (for banks and empty RAM memory
- Memory options for the 8 DMX universes banks
- Function Black Out
- Control of LCD back light illumination
- LCD Contrast Control
- Keyboard Shortcuts from the LCD back light
- compiled by Arduino IDE v1.0.6
- Arduino library four universes DMX v0.3 - Deskontrol.net
- Library LCD v1.2.1 - Francisco Malpartida
Code
// ***************************************************************************************************************************
// ***************************************************************************************************************************
// ** **
// ** Arduino DMX-512 Tester Controller **
// ** **
// ** - Firmware v0.6 **
// ** - Hardware v0.0 - v0.2 **
// ** **
// ** - Compilado en Arduino IDE v1.0.6 **
// ** http://www.arduino.cc/en/Main/OldSoftwareReleases **
// ** - Compilado para Arduino Mega 2560 R3 **
// ** http://www.arduino.cc/en/Main/ArduinoBoardMega2560 **
// ** - Libreria Arduino cuatro universos DMX v0.3 - Deskontrol.net **
// ** http://www.deskontrol.net/blog/libreria-arduino-cuatro-universos-dmx/) **
// ** - Libreria LCD v1.2.1 - Francisco Malpartida **
// ** https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/Home **
// ** - Simulacion en Proteus v7.7 SP2 **
// ** - Simulacion en Proteus de Arduino - Microcontrolandos **
// ** http://microcontrolandos.blogspot.mx/2012/12/arduino-componentes-para-o-proteus.html **
// ** **
// ** Autor: **
// ** **
// ** Daniel Roberto Becerril Angeles **
// ** daniel3514@gmail.com ** **
// ** https://github.com/daniel3514/Arduino-DMX-512-Tester-Controller/ **
// ** **
// ** Licenciamiento: **
// ** **
// ** GNU General Pubic Licence Version 3 **
// ** https://www.gnu.org/copyleft/gpl.html **
// ** **
// ***************************************************************************************************************************
// ***************************************************************************************************************************
null
// Librerias
#include // libreria para LCD
#include
#include
#include
#include // libreria DMX 4 universos deskontrol four universes DMX library - http://www.deskontrol.net/blog
// DMX Library
#define DMX512 (0) // (250 kbaud - 2 to 512 channels) Standard USITT DMX-512
//#define DMX1024 (1) // (500 kbaud - 2 to 1024 channels) Completely non standard - TESTED ok
//#define DMX2048 (2) // (1000 kbaud - 2 to 2048 channels) called by manufacturers DMX1000K, DMX 4x or DMX 1M ???
null
// Puertos, variables
// DMX
//int DMX_Data_Flux = 2; // control de flujo de datos para dmx, 0 por default
int DMX_Values [515]; // array de valores actuales DMX
int Canal_Actual = 1;
// Botones cursor
int Boton_Up = 51;
int Boton_Down = 45;
int Boton_Left = 53;
int Boton_Right = 49;
int Boton_Center = 47;
byte LCD_Col_Pos = 0; // posicion en tiempo real de lcd
byte LCD_Row_Pos = 0; // posicion en tiempo real de lcd
byte Cursor_Conf[4][20] = {{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}, // config de posiciones de lcd Col Row
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}};
// Botones Numerico Array
int Boton_Array_1 = 36;
int Boton_Array_2 = 34;
int Boton_Array_3 = 32;
int Boton_Array_4 = 30;
int Boton_Array_A = 44;
int Boton_Array_B = 42;
int Boton_Array_C = 40;
int Boton_Array_D = 38;
byte Boton_Calc = 17; // valor calculado # E * F, 17 sin valor calculado
byte Num_Col_Pos = 0; // posicion en tiempo real de lcd
byte Num_Row_Pos = 0; // posicion en tiempo real de lcd
int Num_Val = 0; // valor generado al calculo
long Boton_Delay_Teclado = 100; // delay de lectura de boton
// Potenciometro
int Pot = A15; // entrada de potenciometro
// LCD
int LCD_RS = 8; // puertos de conexion de LCD
int LCD_E = 9;
int LCD_D4 = 10;
int LCD_D5 = 11;
int LCD_D6 = 12;
int LCD_D7 = 13;
LiquidCrystal lcd(LCD_RS, LCD_E, LCD_D4, LCD_D5, LCD_D6, LCD_D7); //LCD setup
int Back_Light_PWM = 3; // salida para PWM de Back Light de LCD
int Contrast_PWM = 4; // salida para pwm de contraste de LCD
byte Back_Light_On_Off = 0; // saber si esta encendida o apagada
null
void setup()
{
// DMX
//pinMode(DMX_Data_Flux, OUTPUT);
// Botones cursor
pinMode(Boton_Up, INPUT_PULLUP);
pinMode(Boton_Down, INPUT_PULLUP);
pinMode(Boton_Left, INPUT_PULLUP);
pinMode(Boton_Right, INPUT_PULLUP);
pinMode(Boton_Center, INPUT_PULLUP);
// Botones numerico
pinMode(Boton_Array_1, OUTPUT);
pinMode(Boton_Array_2, OUTPUT);
pinMode(Boton_Array_3, OUTPUT);
pinMode(Boton_Array_4, OUTPUT);
pinMode(Boton_Array_A, INPUT_PULLUP);
pinMode(Boton_Array_B, INPUT_PULLUP);
pinMode(Boton_Array_C, INPUT_PULLUP);
pinMode(Boton_Array_D, INPUT_PULLUP);
digitalWrite(Boton_Array_1, HIGH);
digitalWrite(Boton_Array_2, HIGH);
digitalWrite(Boton_Array_3, HIGH);
digitalWrite(Boton_Array_4, HIGH);
// LCD
pinMode(LCD_RS, OUTPUT);
pinMode(LCD_E, OUTPUT);
pinMode(LCD_D7, OUTPUT);
pinMode(LCD_D6, OUTPUT);
pinMode(LCD_D5, OUTPUT);
pinMode(LCD_D4, OUTPUT);
pinMode(Back_Light_PWM, OUTPUT);
lcd.begin(20, 4); //tamaño de LCD
// DMX
ArduinoDmx0.set_tx_address(1); // poner aqui la direccion de inicio de DMX
ArduinoDmx0.set_tx_channels(512); // poner aqui el numero de canales a transmitir
ArduinoDmx0.init_tx(DMX512); // iniciar transmision universo 0, modo estandar DMX512
// no conectados
pinMode(5, OUTPUT);
digitalWrite(5, LOW);
pinMode(6, OUTPUT);
digitalWrite(6, LOW);
pinMode(7, OUTPUT);
digitalWrite(7, LOW);
pinMode(22, OUTPUT);
digitalWrite(22, LOW);
pinMode(23, OUTPUT);
digitalWrite(23, LOW);
pinMode(24, OUTPUT);
digitalWrite(24, LOW);
pinMode(25, OUTPUT);
digitalWrite(25, LOW);
pinMode(26, OUTPUT);
digitalWrite(26, LOW);
pinMode(27, OUTPUT);
digitalWrite(27, LOW);
pinMode(28, OUTPUT);
digitalWrite(28, LOW);
pinMode(29, OUTPUT);
digitalWrite(29, LOW);
pinMode(31, OUTPUT);
digitalWrite(31, LOW);
pinMode(33, OUTPUT);
digitalWrite(33, LOW);
pinMode(35, OUTPUT);
digitalWrite(35, LOW);
pinMode(37, OUTPUT);
digitalWrite(37, LOW);
pinMode(39, OUTPUT);
digitalWrite(39, LOW);
pinMode(41, OUTPUT);
digitalWrite(41, LOW);
pinMode(43, OUTPUT);
digitalWrite(43, LOW);
pinMode(46, OUTPUT);
digitalWrite(46, LOW);
pinMode(48, OUTPUT);
digitalWrite(48, LOW);
pinMode(50, OUTPUT);
digitalWrite(50, LOW);
pinMode(52, OUTPUT);
digitalWrite(52, LOW);
pinMode(A0, OUTPUT);
digitalWrite(A0, LOW);
pinMode(A1, OUTPUT);
digitalWrite(A1, LOW);
pinMode(A2, OUTPUT);
digitalWrite(A2, LOW);
pinMode(A3, OUTPUT);
digitalWrite(A3, LOW);
pinMode(A4, OUTPUT);
digitalWrite(A4, LOW);
pinMode(A5, OUTPUT);
digitalWrite(A5, LOW);
pinMode(A6, OUTPUT);
digitalWrite(A6, LOW);
pinMode(A7, OUTPUT);
digitalWrite(A7, LOW);
pinMode(A8, OUTPUT);
digitalWrite(A8, LOW);
pinMode(A9, OUTPUT);
digitalWrite(A9, LOW);
pinMode(A10, OUTPUT);
digitalWrite(A10, LOW);
pinMode(A11, OUTPUT);
digitalWrite(A11, LOW);
pinMode(A12, OUTPUT);
digitalWrite(A12, LOW);
pinMode(A13, OUTPUT);
digitalWrite(A13, LOW);
pinMode(A14, OUTPUT);
digitalWrite(A14, LOW);
}
null
void loop()
{
digitalWrite(2, HIGH); // max 485 como salida
Back_Light_Init();
Contrast_Init();
GUI_About();
GUI_Memory_Init();
}
null
void Back_Light_Init()
{
// ultimo estado del back light
byte Back_Light_Value = EEPROM.read(513);
analogWrite(Back_Light_PWM, Back_Light_Value);
if (Back_Light_Value == 0)
{
Back_Light_On_Off = 0;
}
if (Back_Light_Value > 0)
{
Back_Light_On_Off = 1;
}
}
void Contrast_Init()
{
// ultimo estado del comtrast
byte Contrast_Value = EEPROM.read(514);
analogWrite(Contrast_PWM, Contrast_Value);
}
void Back_Light_En()
{
byte Back_Light_Value = EEPROM.read(513); // lectura del ultimo valor desde la eeprom, 513 es donde se guarda el valor
// encender
if (Back_Light_On_Off == 0) // si esta apagada encenderla
{
if (Back_Light_Value == 0) // la encendemos de todos modos
{
analogWrite(Back_Light_PWM, 127); // aqui el valor a encender en el caso que se haya establecido apagado el back light
}
if (Back_Light_Value > 0)
{
analogWrite(Back_Light_PWM, Back_Light_Value); // encender con el valor de la eeprom
}
Back_Light_On_Off = 1;
goto salida;
}
// apagar
if (Back_Light_On_Off == 1) // si esta encendida apagarla
{
analogWrite(Back_Light_PWM, 0);
Back_Light_On_Off = 0;
}
salida:
{
delay(300); // para impedir repeticion del comando
}
}
void GUI_About()
{
byte Firm_Ver_Ent = 0;
byte Firm_Ver_Dec = 6;
byte Hard_Ver_Ent = 0;
byte Hard_Ver_Dec = 0;
byte ID = 20;
lcd.clear ();
lcd.noBlink(); // ocultar cursor
lcd.setCursor(0, 0);
for(int numero = 0; numero <= 512; numero ++) // efecto binario en lcd
{
lcd.print (numero, BIN);
}
lcd.clear ();
lcd.setCursor(0, 3);
lcd.print("http://goo.gl/kdYlj7");
lcd.setCursor(3, 0);
lcd.print("Arduino DMX-512");
lcd.setCursor(1, 1);
lcd.print("Tester & Controller");
// Firmware
lcd.setCursor(0, 2);
lcd.print("Firm v");
lcd.print(Firm_Ver_Ent);
lcd.print(".");
lcd.print(Firm_Ver_Dec);
// Hardware
lcd.setCursor(11, 2);
lcd.print("Hard v");
lcd.print(Hard_Ver_Ent);
lcd.print(".");
lcd.print(Hard_Ver_Dec);
delay(2000); //retardo de muestra de mensaje
}
null
void Multi_Matrix(int inicial)
{
// dibujar banco
Numerico_Write (inicial, 13, 0);
Numerico_Write (inicial + 14, 17, 0);
// matrix 1
Numerico_Write (DMX_Values[inicial], 1, 1);
Numerico_Write (DMX_Values[inicial + 1], 5, 1);
Numerico_Write (DMX_Values[inicial + 2], 9, 1);
Numerico_Write (DMX_Values[inicial + 3], 13, 1);
Numerico_Write (DMX_Values[inicial + 4], 17, 1);
// matrix 2
Numerico_Write (DMX_Values[inicial + 5], 1, 2);
Numerico_Write (DMX_Values[inicial + 6], 5, 2);
Numerico_Write (DMX_Values[inicial + 7], 9, 2);
Numerico_Write (DMX_Values[inicial + 8], 13, 2);
Numerico_Write (DMX_Values[inicial + 9], 17, 2);
// matrix 3
Numerico_Write (DMX_Values[inicial + 10], 1, 3);
Numerico_Write (DMX_Values[inicial + 11], 5, 3);
Numerico_Write (DMX_Values[inicial + 12], 9, 3);
Numerico_Write (DMX_Values[inicial + 13], 13, 3);
Numerico_Write (DMX_Values[inicial + 14], 17, 3);
}
void GUI_Control_Matrix()
{
int Inicial = 1;
Canal_Actual = 1;
inicio:
lcd.clear();
lcd.setCursor (0, 0);
lcd.print("c--- Mem Ctr -");
Multi_Matrix (Inicial);
// Cursor
LCD_Col_Pos = 12; // posicion de cursor
LCD_Row_Pos = 0; // posicion e cursor
// configuracion de cursor
Cursor_Conf_Clear(); // limpiar array
// Row 0
Cursor_Conf[0][4] = 1; // Memory
Cursor_Conf[0][8] = 1; // Unit
Cursor_Conf[0][12] = 1; // Banco Inicial
Cursor_Conf[0][16] = 1; // Banco Final
// Row 1
Cursor_Conf[1][0] = 1;
Cursor_Conf[1][4] = 1;
Cursor_Conf[1][8] = 1;
Cursor_Conf[1][12] = 1;
Cursor_Conf[1][16] = 1;
// Row 2
Cursor_Conf[2][0] = 1;
Cursor_Conf[2][4] = 1;
Cursor_Conf[2][8] = 1;
Cursor_Conf[2][12] = 1;
Cursor_Conf[2][16] = 1;
// Row 3
Cursor_Conf[3][0] = 1;
Cursor_Conf[3][4] = 1;
Cursor_Conf[3][8] = 1;
Cursor_Conf[3][12] = 1;
Cursor_Conf[3][16] = 1;
// navegar
Banco:
GUI_Navegar(1, Inicial);
// Acciones
// Memory
if (LCD_Col_Pos == 4 && LCD_Row_Pos == 0)
{
GUI_Memory();
goto inicio;
}
// Control
if (LCD_Col_Pos == 8 && LCD_Row_Pos == 0)
{
GUI_Control_Options();
goto inicio;
}
// Banco Inicial
if (LCD_Col_Pos == 12 && LCD_Row_Pos == 0)
{
Num_Row_Pos = 0;
Num_Col_Pos = 13;
Num_Val = Inicial; // para dejar el numero que estaba si no se cambia
Numerico_Calc(0);
if (Num_Val > 498) // limite de matriz
{
Num_Val = 498;
}
if (Num_Val == 0) // limite de matriz
{
Num_Val = 1;
}
Inicial = Num_Val;
goto inicio;
}
// Banco Final
if (LCD_Col_Pos == 16 && LCD_Row_Pos == 0)
{
Num_Row_Pos = 0;
Num_Col_Pos = 17;
if (Inicial == 1)
Num_Val = 15;
else
Num_Val = Inicial - 14; // para dejar el numero que estaba si no se cambia
Numerico_Calc(0);
if (Num_Val > 512) // limite de matriz
{
Inicial = 498;
goto inicio;
}
if (Num_Val < 15) // limite de matriz
{
Inicial = 1;
goto inicio;
}
Inicial = Num_Val - 14;
goto inicio;
}
// posicion 1
if (LCD_Col_Pos == 0 && LCD_Row_Pos == 1)
{
Canal_Actual = Inicial;
goto Salida_DMX;
}
// posicion 2
if (LCD_Col_Pos == 4 && LCD_Row_Pos == 1)
{
Canal_Actual = Inicial + 1;
goto Salida_DMX;
}
// posicion 3
if (LCD_Col_Pos == 8 && LCD_Row_Pos == 1)
{
Canal_Actual = Inicial + 2;
goto Salida_DMX;
}
// posicion 4
if (LCD_Col_Pos == 12 && LCD_Row_Pos == 1)
{
Canal_Actual = Inicial + 3;
goto Salida_DMX;
}
// posicion 5
if (LCD_Col_Pos == 16 && LCD_Row_Pos == 1)
{
Canal_Actual = Inicial + 4;
goto Salida_DMX;
}
// posicion 6
if (LCD_Col_Pos == 0 && LCD_Row_Pos == 2)
{
Canal_Actual = Inicial + 5;
goto Salida_DMX;
}
// posicion 7
if (LCD_Col_Pos == 4 && LCD_Row_Pos == 2)
{
Canal_Actual = Inicial + 6;
goto Salida_DMX;
}
// posicion 8
if (LCD_Col_Pos == 8 && LCD_Row_Pos == 2)
{
Canal_Actual = Inicial + 7;
goto Salida_DMX;
}
// posicion 9
if (LCD_Col_Pos == 12 && LCD_Row_Pos == 2)
{
Canal_Actual = Inicial + 8;
goto Salida_DMX;
}
// posicion 10
if (LCD_Col_Pos == 16 && LCD_Row_Pos == 2)
{
Canal_Actual = Inicial + 9;
goto Salida_DMX;
}
// posicion 11
if (LCD_Col_Pos == 0 && LCD_Row_Pos == 3)
{
Canal_Actual = Inicial + 10;
goto Salida_DMX;
}
// posicion 12
if (LCD_Col_Pos == 4 && LCD_Row_Pos == 3)
{
Canal_Actual = Inicial + 11;
goto Salida_DMX;
}
// posicion 13
if (LCD_Col_Pos == 8 && LCD_Row_Pos == 3)
{
Canal_Actual = Inicial + 12;
goto Salida_DMX;
}
// posicion 14
if (LCD_Col_Pos == 12 && LCD_Row_Pos == 3)
{
Canal_Actual = Inicial + 13;
goto Salida_DMX;
}
// posicion 15
if (LCD_Col_Pos == 16 && LCD_Row_Pos == 3)
{
Canal_Actual = Inicial + 14;
goto Salida_DMX;
}
Salida_DMX:
Num_Row_Pos = LCD_Row_Pos;
Num_Col_Pos = LCD_Col_Pos + 1;
Num_Val = DMX_Values[Canal_Actual]; // para dejar el numero que estaba si no se cambia
Numerico_Calc(1);
if (Num_Val == 612) // ubicar
{
Ubicar();
Num_Col_Pos = Num_Col_Pos - 4;
}
if (Num_Val == 712) // analogo
{
Analog_Read_DMX(Num_Col_Pos - 2, Num_Row_Pos);
Num_Col_Pos = Num_Col_Pos - 4;
goto Banco;
}
if (Num_Val > 255)
{
Num_Val = 255;
Numerico_Write (255, Num_Col_Pos + 2, Num_Row_Pos);
}
ArduinoDmx0.TxBuffer[Canal_Actual - 1] = Num_Val;
DMX_Values[Canal_Actual] = Num_Val;
goto Banco;
}
void Cursor_Conf_Clear()
{
for (byte Conteo_Col = 0; Conteo_Col <= 19; Conteo_Col ++)
{
for (byte Conteo_Row = 0; Conteo_Row <= 3; Conteo_Row ++)
{
Cursor_Conf[Conteo_Row][Conteo_Col] = 0;
}
}
}
void GUI_Navegar(byte matrix, int banco)
{
long Boton_Delay_Cursor = 300; // delay de lectura de boton
byte LCD_Col_Pos_Ant; // saber el estado anterior para borrar cursor
byte LCD_Row_Pos_Ant; // saber el estado anterior para borrar cursor
// guardar valor anterior de row col
LCD_Col_Pos_Ant = LCD_Col_Pos;
LCD_Row_Pos_Ant = LCD_Row_Pos;
// Dibujar cursor
lcd.setCursor (LCD_Col_Pos, LCD_Row_Pos);
lcd.print(">");
// navegacion
Dibujar:
byte Dibujar_Cursor = 0; // saber si dibujar cursor para evitar repeticiones en lcd, 0 no dibujar, 1 dibujar >, 2 dibujar +
// LCD Back Light *
digitalWrite(Boton_Array_1, LOW); // lectura linea 1
if (digitalRead(Boton_Array_D) == LOW)
{
delay(Boton_Delay_Teclado);
Back_Light_En();
}
digitalWrite(Boton_Array_1, HIGH); // lectura linea 1
// Left
if (digitalRead(Boton_Left) == LOW)
{
delay (Boton_Delay_Cursor);
byte Salida_Left = 0;
byte LCD_Col_Pos_Temp = 0;
LCD_Col_Pos_Temp = LCD_Col_Pos;
while (Salida_Left == 0)
{
if (LCD_Col_Pos_Temp == 0)
{
LCD_Col_Pos_Temp = 20;
}
LCD_Col_Pos_Temp = LCD_Col_Pos_Temp - 1;
if (Cursor_Conf[LCD_Row_Pos][LCD_Col_Pos_Temp] == 1)
{
LCD_Col_Pos = LCD_Col_Pos_Temp;
Dibujar_Cursor = 1;
Salida_Left = 1;
}
}
goto Salida;
}
// Right
if (digitalRead(Boton_Right) == LOW)
{
delay(Boton_Delay_Cursor);
byte Salida_Right = 0;
byte LCD_Col_Pos_Temp = 0;
LCD_Col_Pos_Temp = LCD_Col_Pos;
while (Salida_Right == 0)
{
LCD_Col_Pos_Temp = LCD_Col_Pos_Temp + 1;
if (LCD_Col_Pos_Temp >= 20)
{
LCD_Col_Pos_Temp = 0; // regresar al cero
}
if (Cursor_Conf[LCD_Row_Pos][LCD_Col_Pos_Temp] == 1)
{
LCD_Col_Pos = LCD_Col_Pos_Temp;
Dibujar_Cursor = 1;
Salida_Right = 1;
}
}
goto Salida;
}
// Down
if (digitalRead(Boton_Down) == LOW)
{
delay(Boton_Delay_Cursor);
byte Salida_Down = 0;
byte LCD_Row_Pos_Temp = 0;
LCD_Row_Pos_Temp = LCD_Row_Pos;
while (Salida_Down == 0)
{
LCD_Row_Pos_Temp = LCD_Row_Pos_Temp + 1;
if (LCD_Row_Pos_Temp >= 4)
{
LCD_Row_Pos_Temp = 0; // regresar al cero
}
if (Cursor_Conf[LCD_Row_Pos_Temp][LCD_Col_Pos] == 1)
{
LCD_Row_Pos = LCD_Row_Pos_Temp;
Dibujar_Cursor = 1;
Salida_Down = 1;
}
}
goto Salida;
}
// Up
if (digitalRead(Boton_Up) == LOW)
{
delay(Boton_Delay_Cursor);
byte Salida_Up = 0;
byte LCD_Row_Pos_Temp;
LCD_Row_Pos_Temp = LCD_Row_Pos;
while (Salida_Up == 0)
{
if (LCD_Row_Pos_Temp <= 0)
{
LCD_Row_Pos_Temp = 4;
}
LCD_Row_Pos_Temp = LCD_Row_Pos_Temp - 1;
if (Cursor_Conf[LCD_Row_Pos_Temp][LCD_Col_Pos] == 1)
{
Dibujar_Cursor = 1;
LCD_Row_Pos = LCD_Row_Pos_Temp;
Salida_Up = 1;
}
}
goto Salida;
}
// Center
if (digitalRead(Boton_Center) == LOW)
{
delay(Boton_Delay_Cursor);
byte Salida_Center = 0;
while (Salida_Center == 0)
{
if (Cursor_Conf[LCD_Row_Pos][LCD_Col_Pos] == 1)
{
Dibujar_Cursor = 2; // dibujar +
Salida_Center = 1;
}
}
}
Salida:
// Dibujar Cursor
if (Dibujar_Cursor > 0)
{
if (Dibujar_Cursor == 1)
{
// borra el anterior
lcd.setCursor (LCD_Col_Pos_Ant, LCD_Row_Pos_Ant);
lcd.print(" ");
// escribir >
lcd.setCursor (LCD_Col_Pos, LCD_Row_Pos);
lcd.print(">");
// matrix print posicion
if (matrix == 1)
{
// banco inicial
if (LCD_Col_Pos == 12 && LCD_Row_Pos == 0)
{
lcd.setCursor(1, 0);
lcd.print("---");
goto salida;
}
// banco final
if (LCD_Col_Pos == 16 && LCD_Row_Pos == 0)
{
lcd.setCursor(1, 0);
lcd.print("---");
goto salir;
}
// Memory
if (LCD_Col_Pos == 4 && LCD_Row_Pos == 0)
{
lcd.setCursor(1, 0);
lcd.print("---");
goto salida;
}
// Unitary
if (LCD_Col_Pos == 8 && LCD_Row_Pos == 0)
{
lcd.setCursor(1, 0);
lcd.print("---");
goto salida;
}
// banco 1
if (LCD_Col_Pos == 0 && LCD_Row_Pos == 1)
{
Numerico_Write (banco, 1, 0);
goto salida;
}
// banco 2
if (LCD_Col_Pos == 4 && LCD_Row_Pos == 1)
{
Numerico_Write (banco + 1, 1, 0);
goto salida;
}
// banco 3
if (LCD_Col_Pos == 8 && LCD_Row_Pos == 1)
{
Numerico_Write (banco + 2, 1, 0);
goto salida;
}
// banco 4
if (LCD_Col_Pos == 12 && LCD_Row_Pos == 1)
{
Numerico_Write (banco + 3, 1, 0);
goto salida;
}
// banco 5
if (LCD_Col_Pos == 16 && LCD_Row_Pos == 1)
{
Numerico_Write (banco + 4, 1, 0);
goto salida;
}
// banco 6
if (LCD_Col_Pos == 0 && LCD_Row_Pos == 2)
{
Numerico_Write (banco + 5, 1, 0);
goto salida;
}
// banco 7
if (LCD_Col_Pos == 4 && LCD_Row_Pos == 2)
{
Numerico_Write (banco + 6, 1, 0);
goto salida;
}
// banco 8
if (LCD_Col_Pos == 8 && LCD_Row_Pos == 2)
{
Numerico_Write (banco + 7, 1, 0);
goto salida;
}
// banco 9
if (LCD_Col_Pos == 12 && LCD_Row_Pos == 2)
{
Numerico_Write (banco + 8, 1, 0);
goto salida;
}
// banco 10
if (LCD_Col_Pos == 16 && LCD_Row_Pos == 2)
{
Numerico_Write (banco + 9, 1, 0);
goto salida;
}
// banco 11
if (LCD_Col_Pos == 0 && LCD_Row_Pos == 3)
{
Numerico_Write (banco + 10, 1, 0);
goto salida;
}
// banco 12
if (LCD_Col_Pos == 4 && LCD_Row_Pos == 3)
{
Numerico_Write (banco + 11, 1, 0);
goto salida;
}
// banco 13
if (LCD_Col_Pos == 8 && LCD_Row_Pos == 3)
{
Numerico_Write (banco + 12, 1, 0);
goto salida;
}
// banco 14
if (LCD_Col_Pos == 12 && LCD_Row_Pos == 3)
{
Numerico_Write (banco + 13, 1, 0);
goto salida;
}
// banco 15
if (LCD_Col_Pos == 16 && LCD_Row_Pos == 3)
{
Numerico_Write (banco + 14, 1, 0);
goto salida;
}
// escribir guion de bancos
salida:
lcd.setCursor(16, 0);
lcd.print("-");
salir:
{}
}
}
else
{
// escribir +
lcd.setCursor (LCD_Col_Pos, LCD_Row_Pos);
lcd.print("+");
}
//salida
LCD_Col_Pos_Ant = LCD_Col_Pos;
LCD_Row_Pos_Ant = LCD_Row_Pos;
if (Dibujar_Cursor == 2)
{
goto Salir;
}
else
{
Dibujar_Cursor = 0;
}
}
goto Dibujar;
Salir: {}
}
null
void GUI_Memory_Init()
{
lcd.clear ();
// Texto
lcd.setCursor (0, 0);
lcd.print("Initial Memory:");
lcd.setCursor (2, 2);
lcd.print("Empty");
lcd.setCursor (9, 2);
lcd.print("Load");
lcd.setCursor (15, 2);
lcd.print("Clear");
// Cursor
LCD_Col_Pos = 1; // posicion de cursor
LCD_Row_Pos = 2;
// configuracion de cursor
Cursor_Conf_Clear(); // limpiar array
// Acciones
Cursor_Conf[2][1] = 1; // Empty
Cursor_Conf[2][8] = 1; // Load
Cursor_Conf[2][14] = 1; // Clear
// navegar
GUI_Navegar(0, 0);
// Acciones
// Load
if (LCD_Col_Pos == 8 && LCD_Row_Pos == 2)
{
EEPROM_Load();
GUI_Control_Options();
}
// Clear
if (LCD_Col_Pos == 14 && LCD_Row_Pos == 2)
{
EEPROM_Clear();
GUI_Control_Options();
}
// Empty
if (LCD_Col_Pos == 1 && LCD_Row_Pos == 2)
{
GUI_Control_Options();
}
}
void GUI_Memory()
{
lcd.clear ();
// Texto
lcd.setCursor (0, 0);
lcd.print("Memory Options:");
lcd.setCursor (1, 2);
lcd.print("Save");
lcd.setCursor (1, 3);
lcd.print("Load");
lcd.setCursor (7, 2);
lcd.print("Empty");
lcd.setCursor (7, 3);
lcd.print("Clear");
lcd.setCursor (14, 3);
lcd.print("Cancel");
// Cursor
LCD_Col_Pos = 0; // posicion de cursor
LCD_Row_Pos = 2;
// configuracion de cursor
Cursor_Conf_Clear(); // limpiar array
// Acciones
Cursor_Conf[2][0] = 1; // Save
Cursor_Conf[3][0] = 1; // Load
Cursor_Conf[3][6] = 1; // Clear
Cursor_Conf[2][6] = 1; // Empty
Cursor_Conf[3][13] = 1; // Cancel
// navegar
GUI_Navegar(0, 0);
// Acciones
// Load
if (LCD_Col_Pos == 0 && LCD_Row_Pos == 3)
{
EEPROM_Load();
}
// Clear
if (LCD_Col_Pos == 6 && LCD_Row_Pos == 3)
{
EEPROM_Clear();
}
// Save
if (LCD_Col_Pos == 0 && LCD_Row_Pos == 2)
{
EEPROM_Save();
}
// Empty
if (LCD_Col_Pos == 6 && LCD_Row_Pos == 2)
{
EEPROM_Empty();
}
// Cancel
if (LCD_Col_Pos == 3 && LCD_Row_Pos == 13)
{
null
}
}
null
void EEPROM_Save()
{
lcd.clear ();
lcd.setCursor (17, 1);
for(int Canal = 1; Canal <= 512; Canal ++)
{
EEPROM.write(Canal, DMX_Values[Canal]); // lectura desde EEPROM
lcd.print (Canal, BIN);
}
lcd.clear ();
lcd.setCursor (3, 1);
lcd.print ("Memory Saved!");
delay (1000);
}
void EEPROM_Load()
{
lcd.clear ();
lcd.setCursor (17, 1);
for(int Canal = 1; Canal <= 512; Canal ++)
{
DMX_Values[Canal] = EEPROM.read(Canal); // lectura desde EEPROM
ArduinoDmx0.TxBuffer[Canal - 1] = DMX_Values[Canal]; // salida a DMX
lcd.print (Canal, BIN);
}
lcd.clear ();
lcd.setCursor (3, 1);
lcd.print ("Memory Loaded!");
delay (1000);
}
void EEPROM_Empty()
{
lcd.clear ();
lcd.setCursor (17, 1);
for(int Canal = 0; Canal <= 512; Canal ++)
{
DMX_Values[Canal] = 0; // lectura desde EEPROM
ArduinoDmx0.TxBuffer[Canal] = 0; // salida a DMX
lcd.print (Canal, BIN);
}
lcd.clear ();
lcd.setCursor (3, 1);
lcd.print ("Memory Emptied!");
delay (1000);
}
void EEPROM_Clear()
{
lcd.clear ();
lcd.setCursor (17, 1);
for(int Canal = 0; Canal <= 512; Canal ++)
{
DMX_Values[Canal] = 0; // lectura desde EEPROM
ArduinoDmx0.TxBuffer[Canal] = 0; // salida a DMX
EEPROM.write (Canal, 0); // escritura EEPROM
lcd.print (Canal, BIN);
}
lcd.clear ();
lcd.setCursor (3, 1);
lcd.print ("Memory Cleaned!");
delay (1000);
}
void GUI_Control_Options()
{
iniciar:
// LCD
lcd.clear ();
lcd.setCursor (0, 0);
lcd.print ("Control Options:");
lcd.setCursor (2, 2);
lcd.print ("Unitary");
lcd.setCursor (2, 3);
lcd.print ("Matrix");
lcd.setCursor (12, 2);
lcd.print ("Chaser");
lcd.setCursor (12, 3);
lcd.print ("Multiply");
lcd.setCursor (12, 1);
lcd.print ("Config");
lcd.setCursor (2, 1);
lcd.print ("Memory");
// Cursor
LCD_Col_Pos = 1; // posicion de cursor
LCD_Row_Pos = 2;
// configuracion de cursor
Cursor_Conf_Clear(); // limpiar array
// Acciones
Cursor_Conf[2][1] = 1; // Unitary
Cursor_Conf[3][1] = 1; // Matrix
Cursor_Conf[2][11] = 1; // Chaser
Cursor_Conf[3][11] = 1; // Multiply
Cursor_Conf[1][11] = 1; // Config
Cursor_Conf[1][1] = 1; // Memory
// navegar
GUI_Navegar(0, 0);
// Acciones
// Unitary
if (LCD_Col_Pos == 1 && LCD_Row_Pos == 2)
{
GUI_Control_Unit();
}
// Matrix
if (LCD_Col_Pos == 1 && LCD_Row_Pos == 3)
{
GUI_Control_Matrix();
}
// Chaser
if (LCD_Col_Pos == 11 && LCD_Row_Pos == 2)
{
GUI_Control_Chaser();
}
// Multiply
if (LCD_Col_Pos == 11 && LCD_Row_Pos == 3)
{
GUI_Control_Multiply();
}
// Config
if (LCD_Col_Pos == 11 && LCD_Row_Pos == 1)
{
GUI_Config();
}
// Config
if (LCD_Col_Pos == 1 && LCD_Row_Pos == 1)
{
GUI_Memory();
goto iniciar;
}
}
null
void GUI_Config()
{
Inicio:
byte Back_Light_Value = EEPROM.read(513);
byte Contrast_Value = EEPROM.read(514);
// GUI
lcd.clear ();
lcd.setCursor (0, 0);
lcd.print ("LCD Config:");
lcd.setCursor (15, 0);
lcd.print ("About");
lcd.setCursor (3, 1);
lcd.print ("Back Light:");
Numerico_Write(Back_Light_Value, 15, 1);
lcd.setCursor (5, 2);
lcd.print ("Contrast:");
Numerico_Write(Contrast_Value, 15, 2);
lcd.setCursor (15, 3);
lcd.print ("Ctrl");
// Cursor
LCD_Col_Pos = 14; // posicion de cursor
LCD_Row_Pos = 2; // posicion e cursor
// configuracion de cursor
Cursor_Conf_Clear(); // limpiar array
// Cursores
Cursor_Conf[1][14] = 1; // Back Light Value
Cursor_Conf[2][14] = 1; // Contrast Value
Cursor_Conf[3][14] = 1; // control
Cursor_Conf[0][14] = 1; // About
// navegar
Navegacion:
GUI_Navegar(0, 0);
// Acciones
//Back Light Value
if (LCD_Col_Pos == 14 && LCD_Row_Pos == 1)
{
Num_Row_Pos = 1;
Num_Col_Pos = 15;
Numerico_Calc (1);
if (Num_Val == 712)
{
lcd.setCursor (14, 1);
lcd.print("a"); // indicar que es analogo
digitalWrite(Boton_Array_3, LOW); // lectura linea 3
lcd.blink();
while (digitalRead(Boton_Array_D) == HIGH && digitalRead(Boton_Center) == HIGH) // enter y center para paro
{
Num_Val = analogRead(Pot); // lectura desde el potenciometro
Num_Val = Num_Val / 4; // / 4 porque es de 12 bits
Numerico_Write(Num_Val, 15, 1);
analogWrite(Back_Light_PWM, Num_Val);
delay(50); // retardo de lectura
}
lcd.noBlink();
digitalWrite(Boton_Array_3, HIGH); // lectura linea 3
delay(300); // retraso para center
goto salida;
}
if (Num_Val > 255)
{
Num_Val = 255;
Numerico_Write (255, 15, 1);
}
analogWrite(Back_Light_PWM, Num_Val);
salida:
// mecanismo para on off Enable
if (Num_Val == 0)
{
Back_Light_On_Off = 0;
}
if (Num_Val > 0)
{
Back_Light_On_Off = 1;
}
EEPROM.write(513, Num_Val); // guardar valor nuevo
goto Navegacion;
}
//Contrast Value
if (LCD_Col_Pos == 14 && LCD_Row_Pos == 2)
{
Num_Row_Pos = 2;
Num_Col_Pos = 15;
Numerico_Calc (1);
if (Num_Val == 712)
{
lcd.setCursor (14, 2);
lcd.print("a"); // indicar que es analogo
digitalWrite(Boton_Array_3, LOW); // lectura linea 3
lcd.blink();
while (digitalRead(Boton_Array_D) == HIGH && digitalRead(Boton_Center) == HIGH) // enter y center para paro
{
Num_Val = analogRead(Pot); // lectura desde el potenciometro
Num_Val = Num_Val / 4; // / 4 porque es de 12 bits
if (Num_Val > 149) // limite menor de contraste LCD
{
Numerico_Write(Num_Val, 15, 2);
analogWrite(Contrast_PWM, Num_Val);
}
delay(50); // retardo de lectura
}
lcd.noBlink();
digitalWrite(Boton_Array_3, HIGH); // lectura linea 3
delay(300); // retraso para center
goto salir;
}
if (Num_Val > 255)
{
Num_Val = 255;
Numerico_Write (255, 15, 2);
}
if (Num_Val < 150)
{
Num_Val = 150; // limite menor de contraste LCD
Numerico_Write (150, 15, 2);
}
analogWrite(Contrast_PWM, Num_Val);
salir:
EEPROM.write(514, Num_Val); // guardar valor nuevo
goto Navegacion;
}
// Exit
if (LCD_Col_Pos == 14 && LCD_Row_Pos == 3)
{
GUI_Control_Options();
goto Navegacion;
}
// About
if (LCD_Col_Pos == 14 && LCD_Row_Pos == 0)
{
GUI_About();
while (digitalRead(Boton_Center) == HIGH)
{
// esperamos a que se precione enter
}
delay(300); // retardo para el rebote del boton
goto Inicio;
}
goto Navegacion;
}
null
void GUI_Control_Multiply()
{
int First_Channel = 1;
long Multiply = 0;
long Quantity = 0;
int Value = 255;
iniciar:
// LCD
lcd.clear ();
lcd.setCursor (3, 0);
lcd.print ("Value");
lcd.setCursor (0, 1);
lcd.print ("First CH Ctrl");
lcd.setCursor (0, 2);
lcd.print ("Multiply Memory");
lcd.setCursor (0, 3);
lcd.print ("Quantity Apply");
Numerico_Write (Value, 9, 0);
Numerico_Write (First_Channel, 9, 1);
Numerico_Write (Multiply, 9, 2);
Numerico_Write (Quantity, 9, 3);
// Cursor
LCD_Col_Pos = 8; // posicion de cursor
LCD_Row_Pos = 0;
Siguiente:
// configuracion de cursor
Cursor_Conf_Clear(); // limpiar array
// Acciones
Cursor_Conf[1][8] = 1; // first Channel
Cursor_Conf[3][8] = 1; // quantity
Cursor_Conf[2][8] = 1; // Multiply
Cursor_Conf[1][13] = 1; // control
Cursor_Conf[2][13] = 1; // Memory
Cursor_Conf[3][13] = 1; // apply
Cursor_Conf[0][8] = 1; // value
// navegar
GUI_Navegar(0, 0);
// Acciones
// Control
if (LCD_Col_Pos == 13 && LCD_Row_Pos == 1)
{
GUI_Control_Options();
}
// Memory
if (LCD_Col_Pos == 13 && LCD_Row_Pos == 2)
{
GUI_Memory();
goto iniciar;
}
// Apply
if (LCD_Col_Pos == 13 && LCD_Row_Pos == 3)
{
// Validar datos
long valid = Multiply * Quantity;
if (valid > 512) // si no es valido
{
lcd.setCursor(13, 0);
lcd.print("Error! ");
goto Siguiente;
}
// calcular
lcd.setCursor(13, 0);
lcd.print(" ");
long canal;
for (long conteo = 1; conteo <= Quantity; conteo++)
{
if (conteo == 1)
{
canal = First_Channel;
}
if (conteo != 1)
{
canal = canal + Multiply;
}
if (canal > 512)
{
canal = canal - Multiply;
conteo = Quantity;
}
lcd.setCursor(17, 0);
lcd.print(canal);
delay (5);
ArduinoDmx0.TxBuffer[canal - 1] = Value;
DMX_Values[canal] = Value;
}
lcd.setCursor(13, 0);
lcd.print("Ok!");
goto Siguiente;
}
// First Channel
if (LCD_Col_Pos == 8 && LCD_Row_Pos == 1)
{
Num_Row_Pos = 1;
Num_Col_Pos = 9;
Num_Val = First_Channel; // para dejar el numero que estaba si no se cambia
Numerico_Calc(0);
First_Channel = Num_Val;
if (First_Channel == 0)
{
First_Channel = 1;
Numerico_Write (First_Channel, 9, 1);
}
if (First_Channel > 512)
{
First_Channel = 512;
Numerico_Write (First_Channel, 9, 1);
}
}
// Multiply
if (LCD_Col_Pos == 8 && LCD_Row_Pos == 2)
{
Num_Row_Pos = 2;
Num_Col_Pos = 9;
Num_Val = Multiply; // para dejar el numero que estaba si no se cambia
Numerico_Calc(0);
Multiply = Num_Val;
if (Multiply == 0)
{
Multiply = 1;
Numerico_Write (Multiply, 9, 2);
}
if (Multiply > 512)
{
Multiply = 512;
Numerico_Write (Multiply, 9, 2);
}
}
// Quantity
if (LCD_Col_Pos == 8 && LCD_Row_Pos == 3)
{
Num_Row_Pos = 3;
Num_Col_Pos = 9;
Num_Val = Quantity; // para dejar el numero que estaba si no se cambia
Numerico_Calc(0);
Quantity = Num_Val;
if (Quantity == 0)
{
Quantity = 1;
Numerico_Write (Quantity, 9, 3);
}
if (Quantity > 512)
{
Quantity = 512;
Numerico_Write (Quantity, 9, 3);
}
}
// Value
if (LCD_Col_Pos == 8 && LCD_Row_Pos == 0)
{
Num_Row_Pos = 0;
Num_Col_Pos = 9;
Num_Val = Value; // para dejar el numero que estaba si no se cambia
Numerico_Calc(1);
Value = Num_Val;
if (Value > 255)
{
Value = 255;
Numerico_Write (Value, 9, 0);
}
}
goto Siguiente;
}
void GUI_Control_Chaser()
{
long Delay = 1;
long First = 1;
long Final = 0;
iniciar:
// LCD
lcd.clear ();
lcd.setCursor (0, 0);
lcd.print ("ChaserCH ---");
lcd.setCursor (3, 1);
lcd.print ("Delay x10=mS");
lcd.setCursor (0, 2);
lcd.print ("First CH Ctrl");
lcd.setCursor (0, 3);
lcd.print ("Final CH Start");
Numerico_Write (Delay, 9, 1);
Numerico_Write (First, 9, 2);
Numerico_Write (Final, 9, 3);
// Cursor
LCD_Col_Pos = 8; // posicion de cursor
LCD_Row_Pos = 1;
Siguiente:
// configuracion de cursor
Cursor_Conf_Clear(); // limpiar array
// Acciones
Cursor_Conf[1][8] = 1; // Delay
Cursor_Conf[2][8] = 1; // First
Cursor_Conf[3][8] = 1; // Final
Cursor_Conf[2][14] = 1; // control
Cursor_Conf[3][14] = 1; // Start
// navegar
GUI_Navegar(0, 0);
// Acciones
// Control
if (LCD_Col_Pos == 14 && LCD_Row_Pos == 2)
{
GUI_Control_Options();
}
// Start
if (LCD_Col_Pos == 14 && LCD_Row_Pos == 3)
{
long ciclo_longitud = 1300; // numero multiplicador aprox para 1 seg
long ciclo = 0;
long Delay_Cont = 0;
int canal = First;
lcd.setCursor(15,3);
lcd.print("Stop ");
// borrar canales previos
for(int Canales = 0; Canales <= 512; Canales ++)
{
DMX_Values[Canales] = 0; // lectura desde EEPROM
ArduinoDmx0.TxBuffer[Canales] = 0; // salida a DMX
}
while (digitalRead(Boton_Center) == HIGH) // lectura del boton centro
{
ciclo = ciclo + 1;
if (ciclo == ciclo_longitud)
{
Delay_Cont = Delay_Cont + 1;
if (Delay_Cont == Delay)
{
if (canal > Final)
{
canal = First;
}
Numerico_Write (canal, 9, 0);
// apagar lo anterior
for (long contar = First; contar <= Final; contar ++)
{
ArduinoDmx0.TxBuffer[contar - 1] = 0;
DMX_Values[contar] = 0;
}
// encender el siguiente
ArduinoDmx0.TxBuffer[canal - 1] = 255;
DMX_Values[canal] = 255;
Delay_Cont = 0;
canal = canal + 1;
}
ciclo = 0;
}
}
lcd.setCursor(15,3);
lcd.print("Start");
delay (300); // evita que le gane la descarga del capacitor
goto Siguiente;
}
// Delay
if (LCD_Col_Pos == 8 && LCD_Row_Pos == 1)
{
Num_Row_Pos = 1;
Num_Col_Pos = 9;
Num_Val = Delay; // para dejar el numero que estaba si no se cambia
Numerico_Calc(0);
Delay = Num_Val;
}
// First
if (LCD_Col_Pos == 8 && LCD_Row_Pos == 2)
{
Num_Row_Pos = 2;
Num_Col_Pos = 9;
Num_Val = First; // para dejar el numero que estaba si no se cambia
Numerico_Calc(0);
First = Num_Val;
if (First == 0)
{
First = 1;
Numerico_Write (First, 9, 2);
}
if (First > 512)
{
First = 512;
Numerico_Write (First, 9, 2);
}
}
// Final
if (LCD_Col_Pos == 8 && LCD_Row_Pos == 3)
{
Num_Row_Pos = 3;
Num_Col_Pos = 9;
Num_Val = Final; // para dejar el numero que estaba si no se cambia
Numerico_Calc(0);
Final = Num_Val;
if (Final == 0)
{
Final = 1;
Numerico_Write (Final, 9, 3);
}
if (Final > 512)
{
Final = 512;
Numerico_Write (Final, 9, 3);
}
}
goto Siguiente;
}
void Numerico_Write (int valor, int col, int row)
{
//posicionar el valor en los campos 000
lcd.setCursor (col, row);
lcd.print ("000");
if (valor < 10)
{
lcd.setCursor (col + 2, row);
}
if (valor > 9 && valor < 100)
{
lcd.setCursor (col + 1, row);
}
if (valor > 99)
{
lcd.setCursor (col, row);
}
lcd.print (valor);
}
void GUI_Control_Unit()
{
Inicio:
Canal_Actual = 1;
// GUI
lcd.clear ();
lcd.setCursor (0, 0);
lcd.print ("Unitary Control:");
lcd.setCursor (14, 2);
lcd.print ("Ctrl");
lcd.setCursor (14, 3);
lcd.print ("Memory");
lcd.setCursor (0, 2);
lcd.print ("Channel: 001");
lcd.setCursor (2, 3);
lcd.print ("Value:");
Numerico_Write(DMX_Values[1], 9, 3);
// Cursor
LCD_Col_Pos = 8; // posicion de cursor
LCD_Row_Pos = 2; // posicion e cursor
// configuracion de cursor
Cursor_Conf_Clear(); // limpiar array
// Cursores
Cursor_Conf[2][8] = 1; // Channel
Cursor_Conf[3][8] = 1; // Value
Cursor_Conf[2][13] = 1; // Control
Cursor_Conf[3][13] = 1; // Memory
// navegar
Navegacion:
GUI_Navegar(0, 0);
// Acciones
//Channel
if (LCD_Col_Pos == 8 && LCD_Row_Pos == 2)
{
Numerico_Write(Canal_Actual, 9, 2);
Num_Row_Pos = 2;
Num_Col_Pos = 9;
Num_Val = Canal_Actual; // para dejar el numero que estaba si no se cambia
Numerico_Calc (0);
if (Num_Val > 512)
{
Num_Val = 512;
Numerico_Write (512, 9, 2);
}
if (Num_Val < 1)
{
Num_Val = 1;
Numerico_Write (1, 9, 2);
}
// mostrar valor actual del canal
Canal_Actual = Num_Val;
Numerico_Write(DMX_Values[Canal_Actual], 9, 3);
}
// Value
if (LCD_Col_Pos == 8 && LCD_Row_Pos == 3)
{
Num_Row_Pos = 3;
Num_Col_Pos = 9;
Num_Val = DMX_Values[Canal_Actual]; // para dejar el numero que estaba si no se cambia
Numerico_Calc (1);
if (Num_Val == 612) // ubicar
{
Ubicar();
}
if (Num_Val == 712) // analogo
{
Analog_Read_DMX(9, 3);
goto Navegacion;
}
if (Num_Val > 255)
{
Num_Val = 255;
Numerico_Write (255, 9, 3);
}
// Escribr valor en dmx
ArduinoDmx0.TxBuffer[Canal_Actual - 1] = Num_Val;
DMX_Values[Canal_Actual] = Num_Val;
goto Navegacion;
}
// Memory
if (LCD_Col_Pos == 13 && LCD_Row_Pos == 3)
{
GUI_Memory();
goto Inicio;
}
// Control
if (LCD_Col_Pos == 13 && LCD_Row_Pos == 2)
{
GUI_Control_Options();
}
goto Navegacion;
}
void Ubicar()
{
digitalWrite(Boton_Array_4, LOW);
while (digitalRead(Boton_Array_C) == HIGH)
{
ArduinoDmx0.TxBuffer[Canal_Actual - 1] = 255;
Numerico_Write (255, Num_Col_Pos - 2, Num_Row_Pos);
delay (100);
ArduinoDmx0.TxBuffer[Canal_Actual - 1] = 0;
lcd.setCursor (Num_Col_Pos - 2, Num_Row_Pos);
lcd.print (" ");
delay (100);
}
digitalWrite(Boton_Array_4, HIGH);
lcd.setCursor (Num_Col_Pos, Num_Row_Pos);
}
void Numerico_Calc(byte value)
{
// escritura del numero desde el teclado numerico si value es 1 entra opcion de A 255 y B 0
byte Salida = 0;
int Num_Val_Temp_1 = 0;
int Num_Val_Temp_2 = 0;
int Num_Val_Temp_3 = 0;
lcd.setCursor (Num_Col_Pos, Num_Row_Pos);
lcd.print("___");
lcd.blink(); // mostrar cursor
//Num_Val = 0;
Num_Col_Pos = Num_Col_Pos + 2;
lcd.setCursor (Num_Col_Pos, Num_Row_Pos);
// primer numero
Numerico_Read(); // leer boton
if (Boton_Calc <= 9)
{
lcd.print (Boton_Calc); // escribir valor calculado
lcd.setCursor (Num_Col_Pos, Num_Row_Pos);
Num_Val = Boton_Calc; // valor calculado
Num_Val_Temp_1 = Boton_Calc; // valor temporal para el acarreo
}
if (Boton_Calc == 14) // enter
{
goto Salida; // num val = 0
}
if (value == 1) // si es un valor
{
if (Boton_Calc == 10) // 255
{
Num_Val = 255;
goto Salida;
}
if (Boton_Calc == 11) // 000
{
Num_Val = 0;
goto Salida;
}
if (Boton_Calc == 12) // ubicar
{
Num_Val = 612;
goto Salida_Option;
}
if (Boton_Calc == 13) // analogo
{
Num_Val = 712;
goto Salida_Option;
}
}
// segundo numero
Numerico_Read(); // leer boton
if (Boton_Calc == 14) // enter
{
Num_Val = Num_Val_Temp_1;
goto Salida; // num val = num val anterior
}
if (value == 1) // si es un valor
{
if (Boton_Calc == 10) // 255
{
Num_Val = 255;
goto Salida;
}
if (Boton_Calc == 11) // 000
{
Num_Val = 0;
goto Salida;
}
if (Boton_Calc == 12) // ubicar
{
Num_Val = 612;
goto Salida_Option;
}
if (Boton_Calc == 13) // analogo
{
Num_Val = 712;
goto Salida_Option;
}
}
if (Boton_Calc <= 9)
{
// recorrer numero ya impreso
Num_Col_Pos = Num_Col_Pos - 1;
lcd.setCursor (Num_Col_Pos, Num_Row_Pos);
lcd.print (Num_Val_Temp_1);
// dibujar numero nuevo
lcd.print (Boton_Calc);
Num_Val_Temp_2 = Boton_Calc;
Num_Col_Pos = Num_Col_Pos + 1;
lcd.setCursor (Num_Col_Pos, Num_Row_Pos);
}
// Tercer numero
Numerico_Read(); // leer boton
if (Boton_Calc == 14) // enter
{
Num_Val = (Num_Val_Temp_1 * 10) + Num_Val_Temp_2;
goto Salida;
}
if (value == 1) // si es un valor
{
if (Boton_Calc == 10) // 255
{
Num_Val = 255;
goto Salida;
}
if (Boton_Calc == 11) // 000
{
Num_Val = 0;
goto Salida;
}
if (Boton_Calc == 12) // ubicar
{
Num_Val = 612;
goto Salida_Option;
}
if (Boton_Calc == 13) // analogo
{
Num_Val = 712;
goto Salida_Option;
}
}
if (Boton_Calc <= 9)
{
// recorrer numero ya impreso
Num_Col_Pos = Num_Col_Pos - 2;
lcd.setCursor (Num_Col_Pos, Num_Row_Pos);
lcd.print (Num_Val_Temp_1);
lcd.print (Num_Val_Temp_2);
// dibujar numero nuevo
Num_Col_Pos = Num_Col_Pos + 2;
lcd.setCursor (Num_Col_Pos, Num_Row_Pos);
lcd.print (Boton_Calc);
Num_Val = Boton_Calc + (Num_Val_Temp_1 * 100) + (Num_Val_Temp_2 * 10);
}
Salida:
lcd.noBlink();
// pintar los ceros antes del numero
Numerico_Write (Num_Val, Num_Col_Pos - 2, Num_Row_Pos);
Num_Col_Pos = Num_Col_Pos - 4;
// regresar el cursor a su ligar
lcd.setCursor (Num_Col_Pos, Num_Row_Pos);
Salida_Option:
{
lcd.noBlink();
lcd.setCursor (Num_Col_Pos, Num_Row_Pos);
delay(300); // rebote de boton
}
}
null
void Numerico_Read()
{
long Num_Barrido_Time = 5; // tiempo entre barrido de keys
Boton_Calc = 17; // limpiar valor para lectura
while (Boton_Calc == 17) // valor calculado # E * F, 17 sin valor calculado
{
// Barrido
// Linea 1
digitalWrite(Boton_Array_1, LOW); // lectura linea 1
// Lectura 1A = 1
if (digitalRead(Boton_Array_A) == LOW)
{
Boton_Calc = 1;
delay(Boton_Delay_Teclado);
}
delay(Num_Barrido_Time);
// Lectura 1B = 6
if (digitalRead(Boton_Array_B) == LOW)
{
Boton_Calc = 4;
delay(Boton_Delay_Teclado);
}
delay(Num_Barrido_Time);
// Lectura 1C = 7
if (digitalRead(Boton_Array_C) == LOW)
{
Boton_Calc = 7;
delay(Boton_Delay_Teclado);
}
delay(Num_Barrido_Time);
// Lectura 1D = * = 15
if (digitalRead(Boton_Array_D) == LOW)
{
Boton_Calc = 15;
delay(Boton_Delay_Teclado);
}
delay(Num_Barrido_Time);
digitalWrite(Boton_Array_1, HIGH); // lectura linea 1
// Linea 2
digitalWrite(Boton_Array_2, LOW); // lectura linea 2
// Lectura 2A = 2
if (digitalRead(Boton_Array_A) == LOW)
{
Boton_Calc = 2;
delay(Boton_Delay_Teclado);
}
delay(Num_Barrido_Time);
// Lectura 2B = 5
if (digitalRead(Boton_Array_B) == LOW)
{
Boton_Calc = 5;
delay(Boton_Delay_Teclado);
}
delay(Num_Barrido_Time);
// Lectura 2C = 8
if (digitalRead(Boton_Array_C) == LOW)
{
Boton_Calc = 8;
delay(Boton_Delay_Teclado);
}
delay(Num_Barrido_Time);
// Lectura 2D = 0
if (digitalRead(Boton_Array_D) == LOW)
{
Boton_Calc = 0;
delay(Boton_Delay_Teclado);
}
delay(Num_Barrido_Time);
digitalWrite(Boton_Array_2, HIGH); // lectura linea 2
// Linea 3
digitalWrite(Boton_Array_3, LOW); // lectura linea 3
// Lectura 3A = 3
if (digitalRead(Boton_Array_A) == LOW)
{
Boton_Calc = 3;
delay(Boton_Delay_Teclado);
}
delay(Num_Barrido_Time);
// Lectura 3B = 4
if (digitalRead(Boton_Array_B) == LOW)
{
Boton_Calc = 6;
delay(Boton_Delay_Teclado);
}
delay(Num_Barrido_Time);
// Lectura 3C = 9
if (digitalRead(Boton_Array_C) == LOW)
{
Boton_Calc = 9;
delay(Boton_Delay_Teclado);
}
delay(Num_Barrido_Time);
// Lectura 3D = 14
if (digitalRead(Boton_Array_D) == LOW)
{
Boton_Calc = 14;
delay(Boton_Delay_Teclado);
}
delay(Num_Barrido_Time);
digitalWrite(Boton_Array_3, HIGH); // lectura linea 3
// Linea 4
digitalWrite(Boton_Array_4, LOW); // lectura linea 4
// Lectura 4A = 10
if (digitalRead(Boton_Array_A) == LOW)
{
Boton_Calc = 10;
delay(Boton_Delay_Teclado);
}
delay(Num_Barrido_Time);
// Lectura 4B = 11
if (digitalRead(Boton_Array_B) == LOW)
{
Boton_Calc = 11;
delay(Boton_Delay_Teclado);
}
delay(Num_Barrido_Time);
// Lectura 4C = 12
if (digitalRead(Boton_Array_C) == LOW)
{
Boton_Calc = 12;
delay(Boton_Delay_Teclado);
}
delay(Num_Barrido_Time);
// Lectura 4D = 13
if (digitalRead(Boton_Array_D) == LOW)
{
Boton_Calc = 13;
delay(Boton_Delay_Teclado);
}
delay(Num_Barrido_Time);
digitalWrite(Boton_Array_4, HIGH); // lectura linea 4
// Cursor center "enter"
if (digitalRead(Boton_Center) == LOW)
{
Boton_Calc = 14;
delay(Boton_Delay_Teclado);
}
}
}
void Analog_Read_DMX(byte col, byte row)
{
// escritura del numero desde el potenciometro aplica a dmx
int read;
lcd.setCursor (col - 1, row);
lcd.print("a"); // indicar que es analogo
digitalWrite(Boton_Array_3, LOW); // lectura linea 3
lcd.blink();
int valores = 0;
while (digitalRead(Boton_Array_D) == HIGH && digitalRead(Boton_Center) == HIGH) // enter y center para paro
{
read = analogRead(Pot); // lectura desde el potenciometro
read = read / 4; // / 4 porque es de 12 bits
delay(50);
if (valores != read)
{
Numerico_Write(read, col, row);
ArduinoDmx0.TxBuffer[Canal_Actual - 1] = read;
DMX_Values[Canal_Actual] = read;
valores = read;
}
}
lcd.noBlink();
digitalWrite(Boton_Array_3, HIGH); // lectura linea 3 // retraso para center
delay(300); // delay para salir de la lectura analoga
}
User InputAt startup it presents options "Initial Memory", to set the initial values of RAM
- The ">" indicates where the cursor is positioned on the menu
- The "+" and the blinking cursor, the numerical symbol indicates that user input is expected
- The navigation between menus are made from the cursor up, down, right, left and center that applies as "enter"
- When "Enter" is given in a menu that requires user input appears "+ ___" and the blinking cursor indicating the user input, in this case the keypad is used if the document number is less than 3 digits press " # "that functions as an" enter "on the number pad
- If it is a user entry where the value of a DMX channel is indicated, you can press (after giving "enter") key "A" that you type directly "255" (maximum value of a channel) or the "B" key you type directly "000" (the minimum value of a channel)
- The "C" key functions as a means for locating a luminaire or a specific channel, just enough to select a channel position in value, to "enter" and press "C", the value would sequence channel between "000 "and" 255 ", to stop press again return to" C "
- The "*" key on or off the back light
- The "D" active only for the analog potentiometer values, the key can enter the value by turning
- The "Ctrl" returns to the menu option "Control Options"
Sets the initial values of the RAM, EEPROM read from:
- Empty (EEPROM leave intact unmodified, all channels are in "000")
- Load (loading the values stored in the EEPROM of the DMX universe)
- Clear (erase the values stored in the EEPROM and leave the channels "000")
The user selects the control method of different DMX channels
- "Memory" Access memory options
- "Unitaryquick access to a specific channel
- "Matrix" display a matrix of 3 x 5 with the current values of the different channels
- "Chaser" make a specific sequence between channels
- "Multiply" assign a value to a specific number of channels, with a specific numerical jump
- "Config" access system settings
It allows quick access to a specific channel
- "Channel" channel access
- "Value" access channel value
- "Ctrl" Accessing the menu "Control Options"
- "Memory" Access to the menu “Memory Options”
Displays a matrix of 3 x 5 with the current values of different DMX channels
- "C ---" shows the number of the selected channel from the cursor
- "Mem" access "Memory Options"
- "Ctrl" access "Control Options"
- "001-015" access to the number of channels to be displayed in the matrix of 3 x 5, the first number represents the first channel and the second to the last channel
Allows a specific sequence between channels
- "ChaserCH" shows the current value sequenced (after the start of sequence)
- "Delay", select the amount of time in mS (milliseconds) between each step, the value approximates the number by 10 = the number of mS
- "First CH", select the first channel of the sequence
- "Final CH". select the last channel in the sequence
- "Ctrl" access "Control Options", sequenced values do not affect the RAM out with the old values
- "Start" begins the sequence and switches to "Stop", here you can stop the sequence
Example:
Select "Delay" 100 (100x10 = 1000 mS), "First CH" 001 and "Final CH" 512 The result is a sequence from channel 1 to 512 and the step between the channels makes every second
Assign a value to a specific number of channels, with a specific numerical jump
- "Value" selects the value to be written (000-255)
- "First CH" selects the first channel
- "Multiply" selects the number of channels to multiply
- "Quantity" select the number of times to multiply
- "Ctrl" Access"Control Options", RAM affects channel
- "Memory" Access "Memory Options"
- "Apply" Evaluates the request is not possible the application displays the message "Error", otherwise apply multiplication channels and places the selected value
Example:
Select "Value" = 255, "First CH" = 001, "Multiply" = 003 "Quantity" = 170 and "Apply"
The result: 170 channels from channel 1 to 510, 3 on 3 with the value 255
Easy access to the EEPROM options
- "Save" saves the DMX universe with current values
- "Load" load from EEPROM values previously saved DMX universe
- "Empty" Delete RAM with the current DMX values without affecting the EEPROM
- "Clear" Clear DMX universe stored in the EEPROM
- "Black" Options "Black Out", puts all channels of DMX universe with "000", without affecting the memory, to exit press "enter" or "central" and returns the above values
- Cancel (return to the previous menu without changes)
Overall system configuration
- Located in"Control Options"
- "Backlight" Select dimmer value between 000-255 of the LCD backlight
- "Contrast" Select dimmer value between 150-255 LCD contrast (lower liite 150, to prevent the LCD not see)
- "Exit" returns to the previous menu
- The modified values are saved in EEPROM memory automatic
Displays the "About .." project and the hardware and firmware versions installed
- Located in "Config"
- To exit press "enter" or "center"
Comments
Please log in or sign up to comment.