Hardware components | ||||||
| × | 1 | ||||
Software apps and online services | ||||||
|
I always wanted to build my own training data set and use it to train the deep learning model. This project, which is a second part of Hand Command Recognizer on Google AIY Vision Kit, explains how to:
- Collect a training dataset of 1,500 hand command images with Google AIY Vision Kit.
- Use this dataset and transfer learning to build the Hand Command Classifier by retraining the last layer of MobileNet model.
- Deploy Hand Command Classifier on Edge AI device – Google AIY Vision Kit.
A fairly accurate model with a latency of 1-2 seconds runs on the Google AIY Vision box and does not require access to Internet or the Cloud. It can be used to control your mobile robot, replace your TV remote control, or for many other applications.
Classifier DesignTwo important qualities of a successful deep learning model used for real-time applications are robustness and low latency.
Model robustness can be improved by having a high degree of control over the image background. This would also help to reduce the model training time and the size of the required training data set.
Model latency can be improved if we reduce the possible search region and would only look for the hand command in a specific part of the image where this command is likely displayed (instead of scanning the entire image with sliding windows of different sizes.)
To achieve these goals I took advantage of the state-of-the-art face recognition model pre-installed on Google AIY Vision Kit.
This is how the Hand Command Recognizer works. First, the recognizer tries to detect and locate a human face on the image and make sure it is stable and does not move around.Given the size and location of the detected face box, the recognizer estimates the size and location of the chest box where the hand commands will likely be displayed. This eliminates the need for searching for the hand command over the entire image and therefore greatly reduces the latency during model inference.
Because we can decide what T-short of jacket we put on, we have a high degree of control over the background of the classified image which increases the model robustness, eliminate the need to collects the large training data set and reduces the model's training time. A diversity of possible backgrounds is also limited (by the number of available T-shirts and jackets in our wardrobe.)
Step 1. Setting Up Google AIY Vision Kit- Buy Google AIY Vision Kit and assemble it following these instructions
- Power the assembled Google AIY Vision Kit
- Start Dev terminal
- Stop and disable joy_detector_demo application which is set to start automatically after the booting
sudo systemctl stop joy_detection_demo.service
sudo systemctl disable joy_detection_demo.service
- Update OS
sudo apt-get update
sudo apt-get upgrade
- Clone the GitHub repository with hand gesture classifier and navigate to the project folder
cd src/examples/vision
git clone https://github.com/dvillevald/hand_gesture_classifier.git
cd hand_gesture_classifier
chmod +x training_data_collector.py
Step 2. Collect Training ImagesThe script training_data_collector.py builds the training data set for your model. It records the images with your hand command and stores them in the sub-folder with the label (class) name of the folder training_data.
Every time you run the script you should provide the values for two arguments:
- label = the name of the class with a particular hand gesture you are recording
- num_images =number of images you want to record during the session
Example:
./training_data_collector.py --label no_hands --num_images 100
This command would record 100 images with hands down (no_hands) and place them in the sub-folder named no_hands of the folder training_data. If the sub-folder no_hands or the main folder training_data doesn't exist, the script will create it. If it exists, the script will add 100 new images recorded during this session to the existing images stored in no_hands.
I used the following hand commands and labels to train my model
In order to make image collection process easier, each recording session is broken down in two stages.
- Raw image capturing. This first stage starts when the LED on the top of the Google AIY Vision Kit is RED. During this stage, the raw images (and the size of location of face box detected on each image) are recorded and stored in the temporary folder.
- Image post-processing. This second stage starts when LED on the top of the Google AIY Vision Kit turns BLUE. During this stage, each recorded raw image is cropped, resized to 160 x 160 pixels and saved in the sub-folder of the training_data folder with the name of the hand gesture label (class.)
Practical suggestions during the collection of training data:
- Make sure that both your head box and your chest box fit in the image. Otherwise the training image will not be saved.
- Select a reasonable number of images (100-200) to capture within the session so you don't get tired. I recorded 200 images which took about 2-3 minutes to collect.
- Make sure that the hand gesture you are recording match the label you specified in --label argument.
- Vary position of your body and hands slightly during a session (moving closer or further away from the camera, slightly rotating your body and hands, etc.) to make your training data set more diverse.
- Record the images in 2-5 different environments. For example, you may record 200 images for each label wearing a red T-shirt in a bright room (environment #1), then record another 200 images for each label wearing a blue sweater in a darker room (environment #2), etc.
- Make sure that in each environment you record the training images for all labels so there is no correlation between the particular environment and specific hand command.
- Capture images in the room bright enough so your hands are clearly visible. For the same reason use T-shirts/sweaters with plain and darker colors.
- Review the images you collected and remove the bad ones if you see any.
There is a great tutorial Tensor Flow for Poets explaining how to retrain MobileNet on your custom data using TensorFlow Hub modules. Follow Steps 1 to 4 of these instructions. The only differences are
- Instead of Step 3 (Download the training images) copy the folder with the training data which you collected (named training_data) from Google AIY Vision kit to your computer. The folder training_data will be used to train your model instead of the folder flower_photos mentioned in Tensor Flow for Poets tutorial.
- At Step 4 (Re)training the network use
IMAGE_SIZE=160
instead of 224 or your model will not compile.
Below is a screenshot with the command to train your model (the script retrain.py can be found in the Code section below or on GitHub repository.)
python-m script.retrain \
--bottleneck_dir=tf_files/bottlenecks\
--how_many_training_steps=1500\
--model_dir=tf_files/models/\
--summaries_dir=tf_files/training_summaries/"mobilenet_0.50_160"\
--output_graph=tf_files/hand_gesture_classifier.pb\
--output_labels=tf_files/hand_gesture_labels.txt\
--architecture="mobilenet_0.50_160"\
--image_dir=tf_files/training_data \
--random_brightness 15
There are several optional training parameters you can play with which can make your model more robust - for example I used random_brightness to randomly change a brightness of the training images. The available parameters are well explained in retrain.py
Once the training is completed, you should get the frozen retrained graph hand_gesture_classifier.pb and a file with labels hand_gesture_labels.txt. Feel free to skip the rest steps of TensorFlowfor Poets tutorial.
Step 4. Compile Model on Linux MachineThe retrained frozen graph hand_gesture_classifier.pb should then be compiled on a Linux machine (I successfully ran it on Ubuntu 16.04; Google tested it on Ubuntu 14.04) using this compiler. Make sure you don't run it on Google Vision Kit!
./bonnet_model_compiler.par\
--frozen_graph_path=hand_gesture_classifier.pb\
--output_graph_path=hand_gesture_classifier.binaryproto\
--input_tensor_name=input\
--output_tensor_names=final_result\
--input_tensor_size=160
This step creates the file hand_gesture_classifier.binaryproto. You can find more information on Google AIY projects page.
Step 5. Upload Your model to Google AIY Vision Kit and Run It!Upload hand_gesture_classifier.binaryproto and hand_gesture_labels.txt to Google AIY Vision Kit and run it!
THANK YOU!
retrain.py
Python# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Simple transfer learning with Inception v3 or Mobilenet models.
With support for TensorBoard.
This example shows how to take a Inception v3 or Mobilenet model trained on
ImageNet images, and train a new top layer that can recognize other classes of
images.
The top layer receives as input a 2048-dimensional vector (1001-dimensional for
Mobilenet) for each image. We train a softmax layer on top of this
representation. Assuming the softmax layer contains N labels, this corresponds
to learning N + 2048*N (or 1001*N) model parameters corresponding to the
learned biases and weights.
Here's an example, which assumes you have a folder containing class-named
subfolders, each full of images for each label. The example folder flower_photos
should have a structure like this:
~/flower_photos/daisy/photo1.jpg
~/flower_photos/daisy/photo2.jpg
...
~/flower_photos/rose/anotherphoto77.jpg
...
~/flower_photos/sunflower/somepicture.jpg
The subfolder names are important, since they define what label is applied to
each image, but the filenames themselves don't matter. Once your images are
prepared, you can run the training with a command like this:
```bash
bazel build tensorflow/examples/image_retraining:retrain && \
bazel-bin/tensorflow/examples/image_retraining/retrain \
--image_dir ~/flower_photos
```
Or, if you have a pip installation of tensorflow, `retrain.py` can be run
without bazel:
```bash
python tensorflow/examples/image_retraining/retrain.py \
--image_dir ~/flower_photos
```
You can replace the image_dir argument with any folder containing subfolders of
images. The label for each image is taken from the name of the subfolder it's
in.
This produces a new model file that can be loaded and run by any TensorFlow
program, for example the label_image sample code.
By default this script will use the high accuracy, but comparatively large and
slow Inception v3 model architecture. It's recommended that you start with this
to validate that you have gathered good training data, but if you want to deploy
on resource-limited platforms, you can try the `--architecture` flag with a
Mobilenet model. For example:
```bash
python tensorflow/examples/image_retraining/retrain.py \
--image_dir ~/flower_photos --architecture mobilenet_1.0_224
```
There are 32 different Mobilenet models to choose from, with a variety of file
size and latency options. The first number can be '1.0', '0.75', '0.50', or
'0.25' to control the size, and the second controls the input image size, either
'224', '192', '160', or '128', with smaller sizes running faster. See
https://research.googleblog.com/2017/06/mobilenets-open-source-models-for.html
for more information on Mobilenet.
To use with TensorBoard:
By default, this script will log summaries to /tmp/retrain_logs directory
Visualize the summaries with this command:
tensorboard --logdir /tmp/retrain_logs
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import collections
from datetime import datetime
import hashlib
import os.path
import random
import re
import sys
import tarfile
import numpy as np
from six.moves import urllib
import tensorflow as tf
from tensorflow.python.framework import graph_util
from tensorflow.python.framework import tensor_shape
from tensorflow.python.platform import gfile
from tensorflow.python.util import compat
FLAGS = None
# These are all parameters that are tied to the particular model architecture
# we're using for Inception v3. These include things like tensor names and their
# sizes. If you want to adapt this script to work with another model, you will
# need to update these to reflect the values in the network you're using.
MAX_NUM_IMAGES_PER_CLASS = 2 ** 27 - 1 # ~134M
def create_image_lists(image_dir, testing_percentage, validation_percentage):
"""Builds a list of training images from the file system.
Analyzes the sub folders in the image directory, splits them into stable
training, testing, and validation sets, and returns a data structure
describing the lists of images for each label and their paths.
Args:
image_dir: String path to a folder containing subfolders of images.
testing_percentage: Integer percentage of the images to reserve for tests.
validation_percentage: Integer percentage of images reserved for validation.
Returns:
A dictionary containing an entry for each label subfolder, with images split
into training, testing, and validation sets within each label.
"""
if not gfile.Exists(image_dir):
tf.logging.error("Image directory '" + image_dir + "' not found.")
return None
result = collections.OrderedDict()
sub_dirs = [
os.path.join(image_dir,item)
for item in gfile.ListDirectory(image_dir)]
sub_dirs = sorted(item for item in sub_dirs
if gfile.IsDirectory(item))
for sub_dir in sub_dirs:
extensions = ['jpg', 'jpeg', 'JPG', 'JPEG']
file_list = []
dir_name = os.path.basename(sub_dir)
if dir_name == image_dir:
continue
tf.logging.info("Looking for images in '" + dir_name + "'")
for extension in extensions:
file_glob = os.path.join(image_dir, dir_name, '*.' + extension)
file_list.extend(gfile.Glob(file_glob))
if not file_list:
tf.logging.warning('No files found')
continue
if len(file_list) < 20:
tf.logging.warning(
'WARNING: Folder has less than 20 images, which may cause issues.')
elif len(file_list) > MAX_NUM_IMAGES_PER_CLASS:
tf.logging.warning(
'WARNING: Folder {} has more than {} images. Some images will '
'never be selected.'.format(dir_name, MAX_NUM_IMAGES_PER_CLASS))
label_name = re.sub(r'[^a-z0-9]+', ' ', dir_name.lower())
training_images = []
testing_images = []
validation_images = []
for file_name in file_list:
base_name = os.path.basename(file_name)
# We want to ignore anything after '_nohash_' in the file name when
# deciding which set to put an image in, the data set creator has a way of
# grouping photos that are close variations of each other. For example
# this is used in the plant disease data set to group multiple pictures of
# the same leaf.
hash_name = re.sub(r'_nohash_.*$', '', file_name)
# This looks a bit magical, but we need to decide whether this file should
# go into the training, testing, or validation sets, and we want to keep
# existing files in the same set even if more files are subsequently
# added.
# To do that, we need a stable way of deciding based on just the file name
# itself, so we do a hash of that and then use that to generate a
# probability value that we use to assign it.
hash_name_hashed = hashlib.sha1(compat.as_bytes(hash_name)).hexdigest()
percentage_hash = ((int(hash_name_hashed, 16) %
(MAX_NUM_IMAGES_PER_CLASS + 1)) *
(100.0 / MAX_NUM_IMAGES_PER_CLASS))
if percentage_hash < validation_percentage:
validation_images.append(base_name)
elif percentage_hash < (testing_percentage + validation_percentage):
testing_images.append(base_name)
else:
training_images.append(base_name)
result[label_name] = {
'dir': dir_name,
'training': training_images,
'testing': testing_images,
'validation': validation_images,
}
return result
def get_image_path(image_lists, label_name, index, image_dir, category):
""""Returns a path to an image for a label at the given index.
Args:
image_lists: Dictionary of training images for each label.
label_name: Label string we want to get an image for.
index: Int offset of the image we want. This will be moduloed by the
available number of images for the label, so it can be arbitrarily large.
image_dir: Root folder string of the subfolders containing the training
images.
category: Name string of set to pull images from - training, testing, or
validation.
Returns:
File system path string to an image that meets the requested parameters.
"""
if label_name not in image_lists:
tf.logging.fatal('Label does not exist %s.', label_name)
label_lists = image_lists[label_name]
if category not in label_lists:
tf.logging.fatal('Category does not exist %s.', category)
category_list = label_lists[category]
if not category_list:
tf.logging.fatal('Label %s has no images in the category %s.',
label_name, category)
mod_index = index % len(category_list)
base_name = category_list[mod_index]
sub_dir = label_lists['dir']
full_path = os.path.join(image_dir, sub_dir, base_name)
return full_path
def get_bottleneck_path(image_lists, label_name, index, bottleneck_dir,
category, architecture):
""""Returns a path to a bottleneck file for a label at the given index.
Args:
image_lists: Dictionary of training images for each label.
label_name: Label string we want to get an image for.
index: Integer offset of the image we want. This will be moduloed by the
available number of images for the label, so it can be arbitrarily large.
bottleneck_dir: Folder string holding cached files of bottleneck values.
category: Name string of set to pull images from - training, testing, or
validation.
architecture: The name of the model architecture.
Returns:
File system path string to an image that meets the requested parameters.
"""
return get_image_path(image_lists, label_name, index, bottleneck_dir,
category) + '_' + architecture + '.txt'
def create_model_graph(model_info):
""""Creates a graph from saved GraphDef file and returns a Graph object.
Args:
model_info: Dictionary containing information about the model architecture.
Returns:
Graph holding the trained Inception network, and various tensors we'll be
manipulating.
"""
with tf.Graph().as_default() as graph:
model_path = os.path.join(FLAGS.model_dir, model_info['model_file_name'])
with gfile.FastGFile(model_path, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
bottleneck_tensor, resized_input_tensor = (tf.import_graph_def(
graph_def,
name='',
return_elements=[
model_info['bottleneck_tensor_name'],
model_info['resized_input_tensor_name'],
]))
return graph, bottleneck_tensor, resized_input_tensor
def run_bottleneck_on_image(sess, image_data, image_data_tensor,
decoded_image_tensor, resized_input_tensor,
bottleneck_tensor):
"""Runs inference on an image to extract the 'bottleneck' summary layer.
Args:
sess: Current active TensorFlow Session.
image_data: String of raw JPEG data.
image_data_tensor: Input data layer in the graph.
decoded_image_tensor: Output of initial image resizing and preprocessing.
resized_input_tensor: The input node of the recognition graph.
bottleneck_tensor: Layer before the final softmax.
Returns:
Numpy array of bottleneck values.
"""
# First decode the JPEG image, resize it, and rescale the pixel values.
resized_input_values = sess.run(decoded_image_tensor,
{image_data_tensor: image_data})
# Then run it through the recognition network.
bottleneck_values = sess.run(bottleneck_tensor,
{resized_input_tensor: resized_input_values})
bottleneck_values = np.squeeze(bottleneck_values)
return bottleneck_values
def maybe_download_and_extract(data_url):
"""Download and extract model tar file.
If the pretrained model we're using doesn't already exist, this function
downloads it from the TensorFlow.org website and unpacks it into a directory.
Args:
data_url: Web location of the tar file containing the pretrained model.
"""
dest_directory = FLAGS.model_dir
if not os.path.exists(dest_directory):
os.makedirs(dest_directory)
filename = data_url.split('/')[-1]
filepath = os.path.join(dest_directory, filename)
if not os.path.exists(filepath):
def _progress(count, block_size, total_size):
sys.stdout.write('\r>> Downloading %s %.1f%%' %
(filename,
float(count * block_size) / float(total_size) * 100.0))
sys.stdout.flush()
filepath, _ = urllib.request.urlretrieve(data_url, filepath, _progress)
print()
statinfo = os.stat(filepath)
tf.logging.info('Successfully downloaded', filename, statinfo.st_size,
'bytes.')
tarfile.open(filepath, 'r:gz').extractall(dest_directory)
def ensure_dir_exists(dir_name):
"""Makes sure the folder exists on disk.
Args:
dir_name: Path string to the folder we want to create.
"""
if not os.path.exists(dir_name):
os.makedirs(dir_name)
bottleneck_path_2_bottleneck_values = {}
def create_bottleneck_file(bottleneck_path, image_lists, label_name, index,
image_dir, category, sess, jpeg_data_tensor,
decoded_image_tensor, resized_input_tensor,
bottleneck_tensor):
"""Create a single bottleneck file."""
tf.logging.info('Creating bottleneck at ' + bottleneck_path)
image_path = get_image_path(image_lists, label_name, index,
image_dir, category)
if not gfile.Exists(image_path):
tf.logging.fatal('File does not exist %s', image_path)
image_data = gfile.FastGFile(image_path, 'rb').read()
try:
bottleneck_values = run_bottleneck_on_image(
sess, image_data, jpeg_data_tensor, decoded_image_tensor,
resized_input_tensor, bottleneck_tensor)
except Exception as e:
raise RuntimeError('Error during processing file %s (%s)' % (image_path,
str(e)))
bottleneck_string = ','.join(str(x) for x in bottleneck_values)
with open(bottleneck_path, 'w') as bottleneck_file:
bottleneck_file.write(bottleneck_string)
def get_or_create_bottleneck(sess, image_lists, label_name, index, image_dir,
category, bottleneck_dir, jpeg_data_tensor,
decoded_image_tensor, resized_input_tensor,
bottleneck_tensor, architecture):
"""Retrieves or calculates bottleneck values for an image.
If a cached version of the bottleneck data exists on-disk, return that,
otherwise calculate the data and save it to disk for future use.
Args:
sess: The current active TensorFlow Session.
image_lists: Dictionary of training images for each label.
label_name: Label string we want to get an image for.
index: Integer offset of the image we want. This will be modulo-ed by the
available number of images for the label, so it can be arbitrarily large.
image_dir: Root folder string of the subfolders containing the training
images.
category: Name string of which set to pull images from - training, testing,
or validation.
bottleneck_dir: Folder string holding cached files of bottleneck values.
jpeg_data_tensor: The tensor to feed loaded jpeg data into.
decoded_image_tensor: The output of decoding and resizing the image.
resized_input_tensor: The input node of the recognition graph.
bottleneck_tensor: The output tensor for the bottleneck values.
architecture: The name of the model architecture.
Returns:
Numpy array of values produced by the bottleneck layer for the image.
"""
label_lists = image_lists[label_name]
sub_dir = label_lists['dir']
sub_dir_path = os.path.join(bottleneck_dir, sub_dir)
ensure_dir_exists(sub_dir_path)
bottleneck_path = get_bottleneck_path(image_lists, label_name, index,
bottleneck_dir, category, architecture)
if not os.path.exists(bottleneck_path):
create_bottleneck_file(bottleneck_path, image_lists, label_name, index,
image_dir, category, sess, jpeg_data_tensor,
decoded_image_tensor, resized_input_tensor,
bottleneck_tensor)
with open(bottleneck_path, 'r') as bottleneck_file:
bottleneck_string = bottleneck_file.read()
did_hit_error = False
try:
bottleneck_values = [float(x) for x in bottleneck_string.split(',')]
except ValueError:
tf.logging.warning('Invalid float found, recreating bottleneck')
did_hit_error = True
if did_hit_error:
create_bottleneck_file(bottleneck_path, image_lists, label_name, index,
image_dir, category, sess, jpeg_data_tensor,
decoded_image_tensor, resized_input_tensor,
bottleneck_tensor)
with open(bottleneck_path, 'r') as bottleneck_file:
bottleneck_string = bottleneck_file.read()
# Allow exceptions to propagate here, since they shouldn't happen after a
# fresh creation
bottleneck_values = [float(x) for x in bottleneck_string.split(',')]
return bottleneck_values
def cache_bottlenecks(sess, image_lists, image_dir, bottleneck_dir,
jpeg_data_tensor, decoded_image_tensor,
resized_input_tensor, bottleneck_tensor, architecture):
"""Ensures all the training, testing, and validation bottlenecks are cached.
Because we're likely to read the same image multiple times (if there are no
distortions applied during training) it can speed things up a lot if we
calculate the bottleneck layer values once for each image during
preprocessing, and then just read those cached values repeatedly during
training. Here we go through all the images we've found, calculate those
values, and save them off.
Args:
sess: The current active TensorFlow Session.
image_lists: Dictionary of training images for each label.
image_dir: Root folder string of the subfolders containing the training
images.
bottleneck_dir: Folder string holding cached files of bottleneck values.
jpeg_data_tensor: Input tensor for jpeg data from file.
decoded_image_tensor: The output of decoding and resizing the image.
resized_input_tensor: The input node of the recognition graph.
bottleneck_tensor: The penultimate output layer of the graph.
architecture: The name of the model architecture.
Returns:
Nothing.
"""
how_many_bottlenecks = 0
ensure_dir_exists(bottleneck_dir)
for label_name, label_lists in image_lists.items():
for category in ['training', 'testing', 'validation']:
category_list = label_lists[category]
for index, unused_base_name in enumerate(category_list):
get_or_create_bottleneck(
sess, image_lists, label_name, index, image_dir, category,
bottleneck_dir, jpeg_data_tensor, decoded_image_tensor,
resized_input_tensor, bottleneck_tensor, architecture)
how_many_bottlenecks += 1
if how_many_bottlenecks % 100 == 0:
tf.logging.info(
str(how_many_bottlenecks) + ' bottleneck files created.')
def get_random_cached_bottlenecks(sess, image_lists, how_many, category,
bottleneck_dir, image_dir, jpeg_data_tensor,
decoded_image_tensor, resized_input_tensor,
bottleneck_tensor, architecture):
"""Retrieves bottleneck values for cached images.
If no distortions are being applied, this function can retrieve the cached
bottleneck values directly from disk for images. It picks a random set of
images from the specified category.
Args:
sess: Current TensorFlow Session.
image_lists: Dictionary of training images for each label.
how_many: If positive, a random sample of this size will be chosen.
If negative, all bottlenecks will be retrieved.
category: Name string of which set to pull from - training, testing, or
validation.
bottleneck_dir: Folder string holding cached files of bottleneck values.
image_dir: Root folder string of the subfolders containing the training
images.
jpeg_data_tensor: The layer to feed jpeg image data into.
decoded_image_tensor: The output of decoding and resizing the image.
resized_input_tensor: The input node of the recognition graph.
bottleneck_tensor: The bottleneck output layer of the CNN graph.
architecture: The name of the model architecture.
Returns:
List of bottleneck arrays, their corresponding ground truths, and the
relevant filenames.
"""
class_count = len(image_lists.keys())
bottlenecks = []
ground_truths = []
filenames = []
if how_many >= 0:
# Retrieve a random sample of bottlenecks.
for unused_i in range(how_many):
label_index = random.randrange(class_count)
label_name = list(image_lists.keys())[label_index]
image_index = random.randrange(MAX_NUM_IMAGES_PER_CLASS + 1)
image_name = get_image_path(image_lists, label_name, image_index,
image_dir, category)
bottleneck = get_or_create_bottleneck(
sess, image_lists, label_name, image_index, image_dir, category,
bottleneck_dir, jpeg_data_tensor, decoded_image_tensor,
resized_input_tensor, bottleneck_tensor, architecture)
ground_truth = np.zeros(class_count, dtype=np.float32)
ground_truth[label_index] = 1.0
bottlenecks.append(bottleneck)
ground_truths.append(ground_truth)
filenames.append(image_name)
else:
# Retrieve all bottlenecks.
for label_index, label_name in enumerate(image_lists.keys()):
for image_index, image_name in enumerate(
image_lists[label_name][category]):
image_name = get_image_path(image_lists, label_name, image_index,
image_dir, category)
bottleneck = get_or_create_bottleneck(
sess, image_lists, label_name, image_index, image_dir, category,
bottleneck_dir, jpeg_data_tensor, decoded_image_tensor,
resized_input_tensor, bottleneck_tensor, architecture)
ground_truth = np.zeros(class_count, dtype=np.float32)
ground_truth[label_index] = 1.0
bottlenecks.append(bottleneck)
ground_truths.append(ground_truth)
filenames.append(image_name)
return bottlenecks, ground_truths, filenames
def get_random_distorted_bottlenecks(
sess, image_lists, how_many, category, image_dir, input_jpeg_tensor,
distorted_image, resized_input_tensor, bottleneck_tensor):
"""Retrieves bottleneck values for training images, after distortions.
If we're training with distortions like crops, scales, or flips, we have to
recalculate the full model for every image, and so we can't use cached
bottleneck values. Instead we find random images for the requested category,
run them through the distortion graph, and then the full graph to get the
bottleneck results for each.
Args:
sess: Current TensorFlow Session.
image_lists: Dictionary of training images for each label.
how_many: The integer number of bottleneck values to return.
category: Name string of which set of images to fetch - training, testing,
or validation.
image_dir: Root folder string of the subfolders containing the training
images.
input_jpeg_tensor: The input layer we feed the image data to.
distorted_image: The output node of the distortion graph.
resized_input_tensor: The input node of the recognition graph.
bottleneck_tensor: The bottleneck output layer of the CNN graph.
Returns:
List of bottleneck arrays and their corresponding ground truths.
"""
class_count = len(image_lists.keys())
bottlenecks = []
ground_truths = []
for unused_i in range(how_many):
label_index = random.randrange(class_count)
label_name = list(image_lists.keys())[label_index]
image_index = random.randrange(MAX_NUM_IMAGES_PER_CLASS + 1)
image_path = get_image_path(image_lists, label_name, image_index, image_dir,
category)
if not gfile.Exists(image_path):
tf.logging.fatal('File does not exist %s', image_path)
jpeg_data = gfile.FastGFile(image_path, 'rb').read()
# Note that we materialize the distorted_image_data as a numpy array before
# sending running inference on the image. This involves 2 memory copies and
# might be optimized in other implementations.
distorted_image_data = sess.run(distorted_image,
{input_jpeg_tensor: jpeg_data})
bottleneck_values = sess.run(bottleneck_tensor,
{resized_input_tensor: distorted_image_data})
bottleneck_values = np.squeeze(bottleneck_values)
ground_truth = np.zeros(class_count, dtype=np.float32)
ground_truth[label_index] = 1.0
bottlenecks.append(bottleneck_values)
ground_truths.append(ground_truth)
return bottlenecks, ground_truths
def should_distort_images(flip_left_right, random_crop, random_scale,
random_brightness):
"""Whether any distortions are enabled, from the input flags.
Args:
flip_left_right: Boolean whether to randomly mirror images horizontally.
random_crop: Integer percentage setting the total margin used around the
crop box.
random_scale: Integer percentage of how much to vary the scale by.
random_brightness: Integer range to randomly multiply the pixel values by.
Returns:
Boolean value indicating whether any distortions should be applied.
"""
return (flip_left_right or (random_crop != 0) or (random_scale != 0) or
(random_brightness != 0))
def add_input_distortions(flip_left_right, random_crop, random_scale,
random_brightness, input_width, input_height,
input_depth, input_mean, input_std):
"""Creates the operations to apply the specified distortions.
During training it can help to improve the results if we run the images
through simple distortions like crops, scales, and flips. These reflect the
kind of variations we expect in the real world, and so can help train the
model to cope with natural data more effectively. Here we take the supplied
parameters and construct a network of operations to apply them to an image.
Cropping
~~~~~~~~
Cropping is done by placing a bounding box at a random position in the full
image. The cropping parameter controls the size of that box relative to the
input image. If it's zero, then the box is the same size as the input and no
cropping is performed. If the value is 50%, then the crop box will be half the
width and height of the input. In a diagram it looks like this:
< width >
+---------------------+
| |
| width - crop% |
| < > |
| +------+ |
| | | |
| | | |
| | | |
| +------+ |
| |
| |
+---------------------+
Scaling
~~~~~~~
Scaling is a lot like cropping, except that the bounding box is always
centered and its size varies randomly within the given range. For example if
the scale percentage is zero, then the bounding box is the same size as the
input and no scaling is applied. If it's 50%, then the bounding box will be in
a random range between half the width and height and full size.
Args:
flip_left_right: Boolean whether to randomly mirror images horizontally.
random_crop: Integer percentage setting the total margin used around the
crop box.
random_scale: Integer percentage of how much to vary the scale by.
random_brightness: Integer range to randomly multiply the pixel values by.
graph.
input_width: Horizontal size of expected input image to model.
input_height: Vertical size of expected input image to model.
input_depth: How many channels the expected input image should have.
input_mean: Pixel value that should be zero in the image for the graph.
input_std: How much to divide the pixel values by before recognition.
Returns:
The jpeg input layer and the distorted result tensor.
"""
jpeg_data = tf.placeholder(tf.string, name='DistortJPGInput')
decoded_image = tf.image.decode_jpeg(jpeg_data, channels=input_depth)
decoded_image_as_float = tf.cast(decoded_image, dtype=tf.float32)
decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0)
margin_scale = 1.0 + (random_crop / 100.0)
resize_scale = 1.0 + (random_scale / 100.0)
margin_scale_value = tf.constant(margin_scale)
resize_scale_value = tf.random_uniform(tensor_shape.scalar(),
minval=1.0,
maxval=resize_scale)
scale_value = tf.multiply(margin_scale_value, resize_scale_value)
precrop_width = tf.multiply(scale_value, input_width)
precrop_height = tf.multiply(scale_value, input_height)
precrop_shape = tf.stack([precrop_height, precrop_width])
precrop_shape_as_int = tf.cast(precrop_shape, dtype=tf.int32)
precropped_image = tf.image.resize_bilinear(decoded_image_4d,
precrop_shape_as_int)
precropped_image_3d = tf.squeeze(precropped_image, squeeze_dims=[0])
cropped_image = tf.random_crop(precropped_image_3d,
[input_height, input_width, input_depth])
if flip_left_right:
flipped_image = tf.image.random_flip_left_right(cropped_image)
else:
flipped_image = cropped_image
brightness_min = 1.0 - (random_brightness / 100.0)
brightness_max = 1.0 + (random_brightness / 100.0)
brightness_value = tf.random_uniform(tensor_shape.scalar(),
minval=brightness_min,
maxval=brightness_max)
brightened_image = tf.multiply(flipped_image, brightness_value)
offset_image = tf.subtract(brightened_image, input_mean)
mul_image = tf.multiply(offset_image, 1.0 / input_std)
distort_result = tf.expand_dims(mul_image, 0, name='DistortResult')
return jpeg_data, distort_result
def variable_summaries(var):
"""Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean', mean)
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev', stddev)
tf.summary.scalar('max', tf.reduce_max(var))
tf.summary.scalar('min', tf.reduce_min(var))
tf.summary.histogram('histogram', var)
def add_final_training_ops(class_count, final_tensor_name, bottleneck_tensor,
bottleneck_tensor_size):
"""Adds a new softmax and fully-connected layer for training.
We need to retrain the top layer to identify our new classes, so this function
adds the right operations to the graph, along with some variables to hold the
weights, and then sets up all the gradients for the backward pass.
The set up for the softmax and fully-connected layers is based on:
https://www.tensorflow.org/versions/master/tutorials/mnist/beginners/index.html
Args:
class_count: Integer of how many categories of things we're trying to
recognize.
final_tensor_name: Name string for the new final node that produces results.
bottleneck_tensor: The output of the main CNN graph.
bottleneck_tensor_size: How many entries in the bottleneck vector.
Returns:
The tensors for the training and cross entropy results, and tensors for the
bottleneck input and ground truth input.
"""
with tf.name_scope('input'):
bottleneck_input = tf.placeholder_with_default(
bottleneck_tensor,
shape=[None, bottleneck_tensor_size],
name='BottleneckInputPlaceholder')
ground_truth_input = tf.placeholder(tf.float32,
[None, class_count],
name='GroundTruthInput')
# Organizing the following ops as `final_training_ops` so they're easier
# to see in TensorBoard
layer_name = 'final_training_ops'
with tf.name_scope(layer_name):
with tf.name_scope('weights'):
initial_value = tf.truncated_normal(
[bottleneck_tensor_size, class_count], stddev=0.001)
layer_weights = tf.Variable(initial_value, name='final_weights')
variable_summaries(layer_weights)
with tf.name_scope('biases'):
layer_biases = tf.Variable(tf.zeros([class_count]), name='final_biases')
variable_summaries(layer_biases)
with tf.name_scope('Wx_plus_b'):
logits = tf.matmul(bottleneck_input, layer_weights) + layer_biases
tf.summary.histogram('pre_activations', logits)
final_tensor = tf.nn.softmax(logits, name=final_tensor_name)
tf.summary.histogram('activations', final_tensor)
with tf.name_scope('cross_entropy'):
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
labels=ground_truth_input, logits=logits)
with tf.name_scope('total'):
cross_entropy_mean = tf.reduce_mean(cross_entropy)
tf.summary.scalar('cross_entropy', cross_entropy_mean)
with tf.name_scope('train'):
optimizer = tf.train.GradientDescentOptimizer(FLAGS.learning_rate)
train_step = optimizer.minimize(cross_entropy_mean)
return (train_step, cross_entropy_mean, bottleneck_input, ground_truth_input,
final_tensor)
def add_evaluation_step(result_tensor, ground_truth_tensor):
"""Inserts the operations we need to evaluate the accuracy of our results.
Args:
result_tensor: The new final node that produces results.
ground_truth_tensor: The node we feed ground truth data
into.
Returns:
Tuple of (evaluation step, prediction).
"""
with tf.name_scope('accuracy'):
with tf.name_scope('correct_prediction'):
prediction = tf.argmax(result_tensor, 1)
correct_prediction = tf.equal(
prediction, tf.argmax(ground_truth_tensor, 1))
with tf.name_scope('accuracy'):
evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar('accuracy', evaluation_step)
return evaluation_step, prediction
def save_graph_to_file(sess, graph, graph_file_name):
output_graph_def = graph_util.convert_variables_to_constants(
sess, graph.as_graph_def(), [FLAGS.final_tensor_name])
with gfile.FastGFile(graph_file_name, 'wb') as f:
f.write(output_graph_def.SerializeToString())
return
def prepare_file_system():
# Setup the directory we'll write summaries to for TensorBoard
if tf.gfile.Exists(FLAGS.summaries_dir):
tf.gfile.DeleteRecursively(FLAGS.summaries_dir)
tf.gfile.MakeDirs(FLAGS.summaries_dir)
if FLAGS.intermediate_store_frequency > 0:
ensure_dir_exists(FLAGS.intermediate_output_graphs_dir)
return
def create_model_info(architecture):
"""Given the name of a model architecture, returns information about it.
There are different base image recognition pretrained models that can be
retrained using transfer learning, and this function translates from the name
of a model to the attributes that are needed to download and train with it.
Args:
architecture: Name of a model architecture.
Returns:
Dictionary of information about the model, or None if the name isn't
recognized
Raises:
ValueError: If architecture name is unknown.
"""
architecture = architecture.lower()
if architecture == 'inception_v3':
# pylint: disable=line-too-long
data_url = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz'
# pylint: enable=line-too-long
bottleneck_tensor_name = 'pool_3/_reshape:0'
bottleneck_tensor_size = 2048
input_width = 299
input_height = 299
input_depth = 3
resized_input_tensor_name = 'Mul:0'
model_file_name = 'classify_image_graph_def.pb'
input_mean = 128
input_std = 128
elif architecture.startswith('mobilenet_'):
parts = architecture.split('_')
if len(parts) != 3 and len(parts) != 4:
tf.logging.error("Couldn't understand architecture name '%s'",
architecture)
return None
version_string = parts[1]
if (version_string != '1.0' and version_string != '0.75' and
version_string != '0.50' and version_string != '0.25'):
tf.logging.error(
""""The Mobilenet version should be '1.0', '0.75', '0.50', or '0.25',
but found '%s' for architecture '%s'""",
version_string, architecture)
return None
size_string = parts[2]
if (size_string != '224' and size_string != '192' and
size_string != '160' and size_string != '128'):
tf.logging.error(
"""The Mobilenet input size should be '224', '192', '160', or '128',
but found '%s' for architecture '%s'""",
size_string, architecture)
return None
if len(parts) == 3:
is_quantized = False
else:
if parts[3] != 'quantized':
tf.logging.error(
"Couldn't understand architecture suffix '%s' for '%s'", parts[3],
architecture)
return None
is_quantized = True
data_url = 'http://download.tensorflow.org/models/mobilenet_v1_'
data_url += version_string + '_' + size_string + '_frozen.tgz'
bottleneck_tensor_name = 'MobilenetV1/Predictions/Reshape:0'
bottleneck_tensor_size = 1001
input_width = int(size_string)
input_height = int(size_string)
input_depth = 3
resized_input_tensor_name = 'input:0'
if is_quantized:
model_base_name = 'quantized_graph.pb'
else:
model_base_name = 'frozen_graph.pb'
model_dir_name = 'mobilenet_v1_' + version_string + '_' + size_string
model_file_name = os.path.join(model_dir_name, model_base_name)
input_mean = 127.5
input_std = 127.5
else:
tf.logging.error("Couldn't understand architecture name '%s'", architecture)
raise ValueError('Unknown architecture', architecture)
return {
'data_url': data_url,
'bottleneck_tensor_name': bottleneck_tensor_name,
'bottleneck_tensor_size': bottleneck_tensor_size,
'input_width': input_width,
'input_height': input_height,
'input_depth': input_depth,
'resized_input_tensor_name': resized_input_tensor_name,
'model_file_name': model_file_name,
'input_mean': input_mean,
'input_std': input_std,
}
def add_jpeg_decoding(input_width, input_height, input_depth, input_mean,
input_std):
"""Adds operations that perform JPEG decoding and resizing to the graph..
Args:
input_width: Desired width of the image fed into the recognizer graph.
input_height: Desired width of the image fed into the recognizer graph.
input_depth: Desired channels of the image fed into the recognizer graph.
input_mean: Pixel value that should be zero in the image for the graph.
input_std: How much to divide the pixel values by before recognition.
Returns:
Tensors for the node to feed JPEG data into, and the output of the
preprocessing steps.
"""
jpeg_data = tf.placeholder(tf.string, name='DecodeJPGInput')
decoded_image = tf.image.decode_jpeg(jpeg_data, channels=input_depth)
decoded_image_as_float = tf.cast(decoded_image, dtype=tf.float32)
decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0)
resize_shape = tf.stack([input_height, input_width])
resize_shape_as_int = tf.cast(resize_shape, dtype=tf.int32)
resized_image = tf.image.resize_bilinear(decoded_image_4d,
resize_shape_as_int)
offset_image = tf.subtract(resized_image, input_mean)
mul_image = tf.multiply(offset_image, 1.0 / input_std)
return jpeg_data, mul_image
def main(_):
# Needed to make sure the logging output is visible.
# See https://github.com/tensorflow/tensorflow/issues/3047
tf.logging.set_verbosity(tf.logging.INFO)
# Prepare necessary directories that can be used during training
prepare_file_system()
# Gather information about the model architecture we'll be using.
model_info = create_model_info(FLAGS.architecture)
if not model_info:
tf.logging.error('Did not recognize architecture flag')
return -1
# Set up the pre-trained graph.
maybe_download_and_extract(model_info['data_url'])
graph, bottleneck_tensor, resized_image_tensor = (
create_model_graph(model_info))
# Look at the folder structure, and create lists of all the images.
image_lists = create_image_lists(FLAGS.image_dir, FLAGS.testing_percentage,
FLAGS.validation_percentage)
class_count = len(image_lists.keys())
if class_count == 0:
tf.logging.error('No valid folders of images found at ' + FLAGS.image_dir)
return -1
if class_count == 1:
tf.logging.error('Only one valid folder of images found at ' +
FLAGS.image_dir +
' - multiple classes are needed for classification.')
return -1
# See if the command-line flags mean we're applying any distortions.
do_distort_images = should_distort_images(
...
This file has been truncated, please download it to see its full contents.
training_data_collector.py
Python#!/usr/bin/env python3
# Copyright 2017 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Hand gesture training dataset collector.
Purpose: In case you want to train the model on your own data, training_data_collector helps to collect the training images.
How it works: The session has two stages.
Stage #1. Raw image collection
During this stage you would display in front of a camera the hand gesture for a specific
label (which name you specify in the command-line argument --label.)
The code runs continuous face detection on the VisionBonnet and, once the face is detected,
it selects the largest face (if several were detected),
determines the size and location of the hand box, makes a snapshot,
saves the image on the disk in the folder /Raw and saves the location of
the hand box on each image in the list hand_boxes_locations. This cycle is then repeated by --num_images times.
Raw image collection will start when the led (in the button on the top of AIY Google Vision box) turns RED.
Stage #2: Processing raw images and storing training images
Once all raw images are collected (and camera preview switches off), each raw image is cropped,
resized to 160x160 pixels and saved in the subfolder of the training_data folder with the name of the specified label.
(Example: if you selected "--label no_hands" in the command line, the images will be stored in folder /training_data/no_hands)
If this folder does not exist, it will be created. The folder with raw images (/Raw) will be deleted at the end of this stage.
The processing and storing of training images will start when the led (in the button on the top of AIY Google Vision box) turns BLUE.
Suggestions:
(1) Select a reasonable number of images (100-200) to capture within the session
so you don't get tired. I used num_images=200 which took about 2-3 minutes to collect.
(2) Make sure that the hand gesture you are showing match teh label you specified in --label
(3) Vary position of your body and hands slightly during the session (moving closer or further away
from the camera, slightly moving around and rotaiting your body and hands, etc.) to make your training dataset more diverse.
(4) Record training images for all labels in each environment (similar illumination and background,
same T-shirt, etc.) to make sure your classifier would not be making decision based on, for example,
the color of your T-shirt instead of hand gesture
(5) Record the images for all labes in 2-5 different environments. For example, you may record 200 images for each label
wearing a red T-short in a bright room (environment 1), then record another 200 images for each label wearing a blue
sweater in another room (environment 2), etc.
(6) Capture images in the room bright enough so you hands are visible; fro the same reason use T-shorts/sweaters
with plain and darker colors
(7) Review the training images you collected and remove the bad ones if you see any
Parameters:
--label: a string specifying the name of the class (label) of the collected images
--num_images: number of images to record during the session
Example:
training_data_collector.py --label no_hands --num_images 100
"""
import argparse
import time
import os
import random
import string
import numpy as np
from PIL import Image
from aiy.vision.inference import CameraInference
from aiy.vision.models import face_detection
from picamera import PiCamera, array
from aiy.vision.leds import Leds
RED = (0xFF, 0x00, 0x00)
BLUE = (0x00, 0x00, 0xFF)
# Led (button on the top of the AIY Google Vision box)
leds = Leds()
# Global variables
path_to_training_folder = "training_data/"
input_img_width = 1640
input_img_height = 1232
output_img_size = 160
# Parameters of hand box (determined with hand_box_locator.py)
x_shift_coef=0.0
y_shift_coef=1.3
scale=2.0
# Create training_data folder if it does not exist
if not os.path.exists(path_to_training_folder):
os.makedirs(path_to_training_folder)
# Check if box boundaries (in pixels) are within the limits
def image_boundary_check(box):
left, upper, right, lower = box
return (int(left)>0 and int(upper)>0 and
int(right)< input_img_width and int(lower) < input_img_height and
int(right)>int(left) and int(lower)>int(upper))
# Crop raw images, resize the results and store final training images in
# subfolder (with name of a class) of training_data folder
def crop_and_store_images(label,hand_box,image):
output_folder = path_to_training_folder + label.lower() + '/'
if not os.path.exists(output_folder):
os.makedirs(output_folder)
left, upper, right, lower = hand_box
box = (int(left), int(upper), int(right), int(lower))
if image_boundary_check(box):
time.sleep(0.1)
random_string = ''.join(random.choice(string.ascii_lowercase + string.digits) for _ in range(10))
cropped_img_name = output_folder + label.lower() + '_' + random_string + ".jpg"
cropped_image = image.crop(box)
cropped_image = cropped_image.resize((output_img_size, output_img_size), Image.ANTIALIAS)
cropped_image.save(cropped_img_name)
# Transform incoming boxes from (x, y, width, height) to format (x1, y1, x2, y2)
# where (x1,y1) are the coordinates of the upper left box corner (i.e. (x,y))
# (x2,y2) are the coordinates of the lower right box corner (i.e. (x+width, y+height))
def transform(bounding_box):
x, y, width, height = bounding_box
return (x, y, x + width,y + height)
# Determines location/size of hand box given the location/size of detected head box
# Use the values of x_shift_coef, y_shift_coef, scale you found earlier with hand_box_locator.py
def hand_box(face_box, x_shift_coef=x_shift_coef, y_shift_coef=y_shift_coef, scale=scale):
x1, y1, x2, y2 = face_box
x_center = int(0.5 * (x2 + x1))
y_center = int(0.5 * (y2 + y1))
face_box_width = x2 - x1
face_box_height = y2 - y1
x_shift = int(x_shift_coef * face_box_width)
y_shift = int(y_shift_coef * face_box_height)
x1_hand_box = x_center + x_shift - int(0.5 * scale * face_box_width)
x2_hand_box = x_center + x_shift + int(0.5 * scale * face_box_width)
y1_hand_box = y_center + y_shift - int(0.5 * scale * face_box_height)
y2_hand_box = y_center + y_shift + int(0.5 * scale * face_box_height)
return (x1_hand_box, y1_hand_box, x2_hand_box, y2_hand_box)
# Select the face with the largest width (others will be ignored)
def select_face(faces):
if len(faces) > 0:
max_width = 0
for face in faces:
width = face.bounding_box[2]
if width > max_width:
max_width = width
face_selected = face
return face_selected
else:
return None
def main():
"""Face detection camera inference example."""
parser = argparse.ArgumentParser()
parser.add_argument(
'--label',
'-lbl',
type=str,
dest='label',
required=True,
help='Specifies the class (label) of training images (e.g. no_hangs).')
parser.add_argument(
'--num_images',
'-nimg',
type=int,
dest='num_images',
default=10,
help='Sets the number of training images to make.')
args = parser.parse_args()
with PiCamera() as camera:
# Forced sensor mode, 1640x1232, full FoV. See:
# https://picamera.readthedocs.io/en/release-1.13/fov.html#sensor-modes
# This is the resolution inference run on.
camera.sensor_mode = 4
# Scaled and cropped resolution. If different from sensor mode implied
# resolution, inference results must be adjusted accordingly. This is
# true in particular when camera.start_recording is used to record an
# encoded h264 video stream as the Pi encoder can't encode all native
# sensor resolutions, or a standard one like 1080p may be desired.
camera.resolution = (1640, 1232)
# Start the camera stream.
camera.framerate = 30
camera.start_preview()
# Stage #1: Capture and store raw images
# Create foler to store raw images
path_to_raw_img_folder = path_to_training_folder + 'raw/'
if not os.path.exists(path_to_raw_img_folder):
os.makedirs(path_to_raw_img_folder)
time.sleep(2)
# Create list to store hand boxes location for each image
hand_boxes_locations = []
with CameraInference(face_detection.model()) as inference:
leds.update(Leds.rgb_on(RED))
time.sleep(3)
counter = 1
start = time.time()
for result in inference.run():
faces = face_detection.get_faces(result)
face = select_face(faces)
if face:
if counter > args.num_images:
break
face_box = transform(face.bounding_box)
hands = hand_box(face_box)
# Capture raw image
img_name = path_to_raw_img_folder + 'img' + str(counter) + '.jpg'
camera.capture(img_name)
time.sleep(0.2)
# Record position of hands
hand_boxes_locations.append([counter,hands])
print('Captured ',str(counter)," out of ",str(args.num_images))
counter += 1
print('Stage #1: It took',str(round(time.time()-start,1)), 'sec to record',str(args.num_images),'raw images')
camera.stop_preview()
# Stage #2: Crop training images from the raw ones and store them in class (label) subfolder
leds.update(Leds.rgb_on(BLUE))
start = time.time()
for i,entry in enumerate(hand_boxes_locations):
img_number = entry[0]
hands = entry[1]
raw_img_name = path_to_raw_img_folder + 'img' + str(img_number) + '.jpg'
if os.path.isfile(raw_img_name):
raw_image = Image.open(raw_img_name)
crop_and_store_images(args.label,hands,raw_image)
raw_image.close()
time.sleep(0.5)
os.remove(raw_img_name)
print('Processed ',str(i+1)," out of ",str(args.num_images))
print('Stage #2: It took ',str(round(time.time()-start,1)), 'sec to process',str(args.num_images),'images')
time.sleep(3)
# Delete empty folder for raw images
if os.listdir(path_to_raw_img_folder) == []:
os.rmdir(path_to_raw_img_folder)
leds.update(Leds.rgb_off())
if __name__ == '__main__':
main()
Comments