Freya Wang
Created February 6, 2022

Deploying super-resolution algorithms on vck5000

Our project is the deployment of a prevailing super-resolution algorithm on vck5000.

23
Deploying super-resolution algorithms on vck5000

Things used in this project

Hardware components

VCK5000 Versal Development Card
AMD VCK5000 Versal Development Card
×1

Software apps and online services

Snappy Ubuntu Core
Snappy Ubuntu Core

Story

Read more

Schematics

modelstructure.png

modelstructure

main.xmodel

compiled model1

skip.xmodel

compiled xmodel2

Code

main.cpp

C/C++
vitis ai runtime code to run our processed xmodel file
#include <iostream>
#include "our_common.h"

// Some utility functions are defined in our_common.h:
//      void ListImages(string const& path, vector<string>& images)
//      void LoadWords(string const& path, vector<string>& kinds)

void CPUPixel_Shuffle(const float* inputs, 
        size_t imageSize, size_t in_height, size_t in_width,
        int imageNum, int scale_factor, float* results)
{
    int in_channel = imageSize / in_height / in_width;
    int out_channel = in_channel / scale_factor / scale_factor;
    int out_height  = in_height * scale_factor;
    int out_width   = in_width * scale_factor;

    for(int idx = 0; idx < imageNum; idx++)
        for(int h=0; h < in_height; h++)
            for(int w=0; w < in_width; w++)
                for(int c=0; c < in_channel; c++){
                    int o_c = (int)(c / (scale_factor * scale_factor));
                    int o_h = (int)(h*scale_factor + (c / scale_factor)%scale_factor);
                    int o_w = (int)(w*scale_factor + c % scale_factor);
                    // results[idx*imageSize + o_c*out_height*out_width + o_h*out_width + o_w]
                    // = inputs[idx*imageSize + c*in_height*in_width + h*in_width + w];
                    results[idx*imageSize + o_h * out_channel * out_width + o_w * out_channel + o_c]
                    = inputs[idx*imageSize + h * in_width * in_channel + w * in_channel + c];
                }
}

void CPUShiftMeanSub(const float* inputs, 
        size_t imageSize, size_t in_height, size_t in_width,
        int imageNum, float* results)
{
    int in_channel = imageSize / in_height / in_width;;
    int out_channel = in_channel;
    int out_height  = in_height;
    int out_width   = in_width;

    float rgb_mean[3] = {114.4440, 111.4605, 103.0200};

    for(int idx = 0; idx < imageNum; idx++)
        for(int h=0; h < in_height; h++)
            for(int w=0; w < in_width; w++)
                for(int c=0; c < in_channel; c++){
                    results[idx * imageSize + out_channel * h * out_width + w * out_channel + c]
                    = (inputs[idx * imageSize + out_channel * h * out_width + w * out_channel + c] - rgb_mean[c]) / 127.5;
                }
    }

void CPUShiftMeanAdd(const float* inputs, 
        size_t imageSize, size_t in_height, size_t in_width,
        int imageNum, float* results)
{
    int in_channel = imageSize / in_height / in_width;;
    int out_channel = in_channel;
    int out_height  = in_height;
    int out_width   = in_width;

    float rgb_mean[3] = {114.4440, 111.4605, 103.0200};

    for(int idx = 0; idx < imageNum; idx++)
        for(int h=0; h < in_height; h++)
            for(int w=0; w < in_width; w++)
                for(int c=0; c < in_channel; c++){
                    results[idx * imageSize + out_channel * h * out_width + w * out_channel + c]
                    = 127.5 * inputs[idx * imageSize + out_channel * h * out_width + w * out_channel + c] + rgb_mean[c];
                }
    }

void CPUSum(const float* inputs_1, const float* inputs_2,
        size_t imageSize, size_t in_height, size_t in_width,
        float* results
){
    int in_channel = imageSize / in_height / in_width;;
    int out_channel = in_channel;
    int out_height  = in_height;
    int out_width   = in_width;

    for (int h = 0; h < out_height; h++)
        for (int w = 0; w < out_width; w++)
            for (int c = 0; c < out_channel; c++){
                results[out_channel * out_width * h + w * out_channel + c]
                = inputs_1[in_channel * in_width * h + w * in_channel + c] + inputs_2[in_channel * in_width * h + w * in_channel + c];
            }
}

void runWDSR(
        vart::Runner *mainbranch_runner, 
        vart::Runner *skipconv_runner, 
        GraphInfo mainbranch_shape,
        GraphInfo skipconv_shape, 
        struct Arguments our_arguments) {
/* Model structure:
 * preprocess: CPUShiftMeanSub
 * left:  skipconv + CPUPixel_Shuffle
 * right: mainbranch + CPUPixel_Shuffle
 * final: (right + left) -> CPUShiftMeanAdd
 */ 
    // Currently, we use random images to test the inference latency. 
    // assert(our_arguments.random_image == true);

    // std::vector<std::string> imageNames;
    // if (our_arguments.random_image == false) {
    //     ListImages(our_arguments.input_path, imageNames);
    //     if (imageNames.size() == 0) {
    //         LOG(ERROR) << "\nError: No images existing under " << our_arguments.input_path;
    //         return ;
    //     }
    // }
    // else {
    //     imageNames.push_back("random");
    // }
    
    const int image_channel = 3;
    const int image_height  = our_arguments.height; 
    const int image_width   = our_arguments.width;
    LOG(INFO) << "Image Height: " << image_height;
    LOG(INFO) << "Image Width : " << image_width;

    // get in/out tensors and dimensions. 
    std::vector<const xir::Tensor*> mainbranch_inputTensors  = mainbranch_runner->get_input_tensors();
    std::vector<const xir::Tensor*> mainbranch_outputTensors = mainbranch_runner->get_output_tensors();
    std::vector<const xir::Tensor*> skipconv_inputTensors  = skipconv_runner->get_input_tensors();
    std::vector<const xir::Tensor*> skipconv_outputTensors = skipconv_runner->get_output_tensors();
    auto mainbranch_in_dims  = mainbranch_inputTensors[0]->get_shape();
    auto mainbranch_out_dims = mainbranch_outputTensors[0]->get_shape();
    auto skipconv_in_dims  = skipconv_inputTensors[0]->get_shape();
    auto skipconv_out_dims = skipconv_outputTensors[0]->get_shape();

    // get shape information
    int mainbranch_inSize  = mainbranch_shape.inTensorList[0].size;
    int mainbranch_outSize = mainbranch_shape.outTensorList[0].size;
    int mainbranch_height  = mainbranch_shape.inTensorList[0].height;
    int mainbranch_width   = mainbranch_shape.inTensorList[0].width;

    int skipconv_inSize  = skipconv_shape.inTensorList[0].size;
    int skipconv_outSize = skipconv_shape.outTensorList[0].size;
    int skipconv_height  = skipconv_shape.inTensorList[0].height;
    int skipconv_width   = skipconv_shape.inTensorList[0].width;

    int inSize = mainbranch_inSize;

#ifdef DEBUG
    LOG(INFO) << "mainbranch_inSize : " << mainbranch_inSize;
    LOG(INFO) << "mainbranch_outSize: " << mainbranch_outSize;
    LOG(INFO) << "mainbranch_height : " << mainbranch_height;
    LOG(INFO) << "mainbranch_width  : " << mainbranch_width;

    LOG(INFO) << "skipconv_inSize : " << skipconv_inSize;
    LOG(INFO) << "skipconv_outSize: " << skipconv_outSize;
    LOG(INFO) << "skipconv_height : " << skipconv_height;
    LOG(INFO) << "skipconv_width  : " << skipconv_width;
#endif

    int batchSize = mainbranch_in_dims[0];
    std::vector<cv::Mat> imageList;
    std::vector<cv::Mat> bimageList;
    
    // allocate inputs/outputs buffers and pointers
    std::vector<std::unique_ptr<vart::TensorBuffer>> mainbranch_inputs, skipconv_inputs;
    std::vector<std::unique_ptr<vart::TensorBuffer>> mainbranch_outputs, skipconv_outputs;
    std::vector<vart::TensorBuffer*> mainbranch_inputsPtr, skipconv_inputsPtr;
    std::vector<vart::TensorBuffer*> mainbranch_outputsPtr, skipconv_outputsPtr;
    
    std::vector<std::shared_ptr<xir::Tensor>> mainbranch_batchTensors;
    std::vector<std::shared_ptr<xir::Tensor>> skipconv_batchTensors;

    float* imageInitial = new float[mainbranch_inSize * batchSize];
    float* imageInputs = new float[mainbranch_inSize * batchSize]; //after shiftmeansub
    float* mainbranch_Results = new float[mainbranch_outSize * batchSize]; //right branch = mb + ps
    float* skipconv_Results = new float[skipconv_outSize * batchSize]; //left branch = sc + ps
    float* left_Results = new float[mainbranch_outSize * batchSize];
    float* right_Results = new float[mainbranch_outSize * batchSize];
    float* sum_Results = new float[mainbranch_outSize * batchSize];
    float* final_Results = new float[mainbranch_outSize * batchSize]; //after shiftmeanadd

    cv::Mat image2 = cv::Mat(image_height, image_width, CV_8UC3);
    unsigned int runSize = 1; //(imageNames.size() < (idx + batchSize) ? (imageNames.size() - idx) : batchSize);
    imageList.clear();
    bimageList.clear();
    for (int i = 0; i < runSize; i++){
        cv::RNG rnger(cv::getTickCount());

        // CV_32FC1 uniform distribution
        // 32-bit floating point, channel 1
        if(our_arguments.random_image == false){
            cv::Mat image0 = cv::imread(our_arguments.input_path);
            printf("%d\n",image0.channels());
            cv::resize(image0, image2, cv::Size(image_height, image_width), 0, 0);
        }
        else{
            rnger.fill(image2, cv::RNG::UNIFORM, cv::Scalar::all(0), cv::Scalar::all(255));
        }
        for (int h = 0; h < image_height; h++) {
            for (int w = 0; w < image_width; w++) {
                for (int c = 0; c < image_channel; c++) {
                    imageInitial[h * image_width * image_channel + w * image_channel + c] = image2.at<cv::Vec3b>(h, w)[c];
                }
            }
        }

        imageList.push_back(image2);
    }

        // cv::Mat outimg;
        // outimg.create(image_height, image_width, CV_8UC3);
        // for (int h = 0; h < image_height; h++) {
        //     for (int w = 0; w < image_width; w++) {
        //         for (int c = 0; c < image_channel; c++) {
        //             outimg.at<cv::Vec3b>(h, w)[c] = imageInitial[h * image_width * image_channel + w * image_channel + c] * 255;
        //         }
        //     }
        // }
        // cv::imwrite("./out.jpg", outimg);
        // return;


        // ======================================================== //
        /************************ ShiftMeanSub *********************/
        // ======================================================== //
        auto start_time0 = std::chrono::high_resolution_clock::now();
        CPUShiftMeanSub(imageInitial, inSize, image_height, image_width, 1, imageInputs);
        auto end_time0 = std::chrono::high_resolution_clock::now();
        auto process_time0 = std::chrono::duration<double,std::milli>(end_time0 - start_time0).count();
        LOG(INFO) << "*******************run_ShiftMeanSub time is******************* " << process_time0;
        LOG(INFO) << "**********   CPU_ShiftMeanSub Done.   **********";
        

        // ======================================================== //
        /******************            mainbranch        *****************/
        // ======================================================== //
        /* in/out tensor refactory for batch input/output */
        mainbranch_batchTensors.push_back(std::shared_ptr<xir::Tensor>(xir::Tensor::create(
                        mainbranch_inputTensors[0]->get_name(), mainbranch_in_dims,
                        xir::DataType{xir::DataType::FLOAT, sizeof(float) * 8u})));
        mainbranch_inputs.push_back(std::make_unique<CpuFlatTensorBuffer>(
                        imageInputs, mainbranch_batchTensors.back().get()));
        mainbranch_batchTensors.push_back(std::shared_ptr<xir::Tensor>(xir::Tensor::create(
                        mainbranch_outputTensors[0]->get_name(), mainbranch_out_dims,
                        xir::DataType{xir::DataType::FLOAT, sizeof(float) * 8u})));
        mainbranch_outputs.push_back(std::make_unique<CpuFlatTensorBuffer>(
                        mainbranch_Results, mainbranch_batchTensors.back().get()));

        mainbranch_inputsPtr.clear();
        mainbranch_outputsPtr.clear();
        mainbranch_inputsPtr.push_back(mainbranch_inputs[0].get());
        mainbranch_outputsPtr.push_back(mainbranch_outputs[0].get());

        // execution
        auto start_time1 = std::chrono::high_resolution_clock::now();
        auto job_id1 = mainbranch_runner->execute_async(mainbranch_inputsPtr, mainbranch_outputsPtr);
        mainbranch_runner->wait(job_id1.first, -1);
        auto end_time1 = std::chrono::high_resolution_clock::now();
        auto process_time1 = std::chrono::duration<double,std::milli>(end_time1 - start_time1).count();
        LOG(INFO) << "*******************run_mainbranch time is******************* " << process_time1;
        LOG(INFO) << "**********   < mainbranch > branch Done.   **********";

        // ======================================================== //
        /******************            skipconv        *****************/
        // ======================================================== //
        /* in/out tensor refactory for batch input/output */
        skipconv_batchTensors.push_back(std::shared_ptr<xir::Tensor>(xir::Tensor::create(
                        skipconv_inputTensors[0]->get_name(), skipconv_in_dims,
                        xir::DataType{xir::DataType::FLOAT, sizeof(float) * 8u})));
        skipconv_inputs.push_back(std::make_unique<CpuFlatTensorBuffer>(
                        imageInputs, skipconv_batchTensors.back().get()));
        skipconv_batchTensors.push_back(std::shared_ptr<xir::Tensor>(xir::Tensor::create(
                        skipconv_outputTensors[0]->get_name(), skipconv_out_dims,
                        xir::DataType{xir::DataType::FLOAT, sizeof(float) * 8u})));
        skipconv_outputs.push_back(std::make_unique<CpuFlatTensorBuffer>(
                        skipconv_Results, skipconv_batchTensors.back().get()));

        skipconv_inputsPtr.clear();
        skipconv_outputsPtr.clear();
        skipconv_inputsPtr.push_back(skipconv_inputs[0].get());
        skipconv_outputsPtr.push_back(skipconv_outputs[0].get());

        // execution
        auto start_time2 = std::chrono::high_resolution_clock::now();
        auto job_id2 = skipconv_runner->execute_async(skipconv_inputsPtr, skipconv_outputsPtr);
        skipconv_runner->wait(job_id2.first, -1);
        auto end_time2 = std::chrono::high_resolution_clock::now();
        auto process_time2 = std::chrono::duration<double,std::milli>(end_time2 - start_time2).count();
        LOG(INFO) << "*******************run_skipconv time is******************* " << process_time2;
        LOG(INFO) << "**********   < skipconv > branch Done.   **********";

        // ======================================================== //
        /************************ Pixel Shuffle *********************/
        // ======================================================== //
        int scale_factor = 2;
        auto start_time3 = std::chrono::high_resolution_clock::now();
        CPUPixel_Shuffle(mainbranch_Results, mainbranch_outSize, 
            mainbranch_shape.outTensorList[0].height, mainbranch_shape.outTensorList[0].width,
            1, 2, right_Results);
        auto end_time3 = std::chrono::high_resolution_clock::now();
        auto process_time3 = std::chrono::duration<double,std::milli>(end_time3 - start_time3).count();
        LOG(INFO) << "*******************run_single_pixelshuffle time is******************* " << process_time3;

        auto start_time3_2 = std::chrono::high_resolution_clock::now();
        CPUPixel_Shuffle(skipconv_Results, skipconv_outSize, 
            skipconv_shape.outTensorList[0].height, skipconv_shape.outTensorList[0].width,
            1, scale_factor, left_Results);
        auto end_time3_2 = std::chrono::high_resolution_clock::now();
        auto process_time3_2 = std::chrono::duration<double,std::milli>(end_time3_2 - start_time3_2).count();
        LOG(INFO) << "*******************run_single_pixelshuffle time is******************* " << process_time3_2;
        LOG(INFO) << "**********   CPU_PixelShuffle Done.   **********";

        int ps_height = skipconv_shape.outTensorList[0].height * scale_factor;
        int ps_width = skipconv_shape.outTensorList[0].width * scale_factor;
        int ps_size = skipconv_outSize;
        int ps_channel = ps_size / (ps_height * ps_width);

        // ======================================================== //
        /************************ Sum *********************/
        // ======================================================== //
        auto start_time4 = std::chrono::high_resolution_clock::now();
        CPUSum(left_Results, right_Results, ps_size, ps_height, ps_width, sum_Results);
        auto end_time4 = std::chrono::high_resolution_clock::now();
        auto process_time4 = std::chrono::duration<double,std::milli>(end_time4 - start_time4).count();
        LOG(INFO) << "*******************run_sum time is******************* " << process_time4;
        LOG(INFO) << "**********   CPU_Sum Done.   **********";

        // ======================================================== //
        /************************ ShiftMeanAdd *********************/
        // ======================================================== //
        auto start_time5 = std::chrono::high_resolution_clock::now();
        CPUShiftMeanAdd(sum_Results, ps_size, ps_height, ps_width, 1, final_Results);
        auto end_time5 = std::chrono::high_resolution_clock::now();
        auto process_time5 = std::chrono::duration<double,std::milli>(end_time5 - start_time5).count();
        LOG(INFO) << "*******************run_shiftmeanadd time is******************* " << process_time5;
        LOG(INFO) << "**********   CPU_ShiftMeanAdd Done.   **********";

        cv::Mat outimg;
        int outheight = image_height*2;
        int outwidth = image_width*2;
        outimg.create(outheight, outwidth, CV_8UC3);
        for (int h = 0; h < outheight; h++) {
            for (int w = 0; w < outwidth; w++) {
                for (int c = 0; c < image_channel; c++) {
                    outimg.at<cv::Vec3b>(h, w)[c] = final_Results[h * outwidth * image_channel + w * image_channel + c];
                }
            }
        }
        cv::imwrite("./out.jpg", outimg);
    
    delete[] imageInitial;
    delete[] imageInputs;
    delete[] mainbranch_Results;
    delete[] skipconv_Results;
    delete[] left_Results;
    delete[] right_Results;
    delete[] sum_Results;
    delete[] final_Results;

}


int main(int argc, char* argv[]) {
    auto our_arguments = getArguments(argc, argv);
    
    auto mainbranch_graph = xir::Graph::deserialize(our_arguments.mainbranch_path);
    auto skipconv_graph = xir::Graph::deserialize(our_arguments.skipconv_path);
    auto mainbranch_subgraph = get_dpu_subgraph(mainbranch_graph.get());
    auto skipconv_subgraph = get_dpu_subgraph(skipconv_graph.get());
   
    LOG(INFO) << "Create Runner for mainbranch. ";
    auto mainbranch_runner = vart::Runner::create_runner(mainbranch_subgraph[0], "run");
    LOG(INFO) << "Create Runner for skipconv. ";
    auto skipconv_runner = vart::Runner::create_runner(skipconv_subgraph[0], "run");

    LOG(INFO) << "Get in/out tensors of mainbranch. ";
    auto mainbranch_inputTensors  = mainbranch_runner->get_input_tensors();
    auto mainbranch_outputTensors = mainbranch_runner->get_output_tensors();
    LOG(INFO) << "Get in/out tensors of skipconv. ";
    auto skipconv_inputTensors  = skipconv_runner->get_input_tensors();
    auto skipconv_outputTensors = skipconv_runner->get_output_tensors();

    // // GraphInfo shapes;
    // // const string baseImagePath = "./images/";
    // // const string wordsPath = "./";
    
    // Get input and output shapes
    GraphInfo mainbranch_shape;
    int mainbranch_inputCnt = mainbranch_inputTensors.size();
    int mainbranch_outputCnt = mainbranch_outputTensors.size();
    TensorShape mainbranch_inshape[mainbranch_inputCnt];
    TensorShape mainbranch_outshape[mainbranch_outputCnt];
    mainbranch_shape.inTensorList  = mainbranch_inshape;
    mainbranch_shape.outTensorList = mainbranch_outshape;
    LOG(INFO) << "mainbranch_inputCnt: " << mainbranch_inputCnt;

    GraphInfo skipconv_shape;
    int skipconv_inputCnt = skipconv_inputTensors.size();
    int skipconv_outputCnt = skipconv_outputTensors.size();
    TensorShape skipconv_inshape[skipconv_inputCnt];
    TensorShape skipconv_outshape[skipconv_outputCnt];
    skipconv_shape.inTensorList  = skipconv_inshape;
    skipconv_shape.outTensorList = skipconv_outshape;

    getTensorShape(mainbranch_runner.get(), &mainbranch_shape, mainbranch_inputCnt, mainbranch_outputCnt);
    getTensorShape(skipconv_runner.get(), &skipconv_shape, skipconv_inputCnt, skipconv_outputCnt);

    printTensorShape(mainbranch_shape, mainbranch_inputCnt, mainbranch_outputCnt);
    printTensorShape(skipconv_shape, skipconv_inputCnt, skipconv_outputCnt);

    /* run the model with batch  */
    // mainbranch_runner, skipconv_runner, mainbranch_shape, skipconv_shape, our_arguments
    runWDSR(mainbranch_runner.get(), skipconv_runner.get(), 
            mainbranch_shape, skipconv_shape, our_arguments);

    
    return 0;
}

build.sh

SH
build the vart executable file
#
# Copyright 2019 Xilinx Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1
CXX=${CXX:-g++}
os=`lsb_release -a | grep "Distributor ID" | sed 's/^.*:\s*//'`
os_version=`lsb_release -a | grep "Release" | sed 's/^.*:\s*//'`
arch=`uname -p`
target_info=${os}.${os_version}.${arch}
install_prefix_default=$HOME/.local/${target_info}
$CXX --version

result=0 && pkg-config --list-all | grep opencv4 && result=1
if [ $result -eq 1 ]; then
	OPENCV_FLAGS=$(pkg-config --cflags --libs-only-L opencv4)
else
	OPENCV_FLAGS=$(pkg-config --cflags --libs-only-L opencv)
fi

name=wdsr
if [[ "$CXX"  == *"sysroot"* ]];then
$CXX -O2 -fno-inline -I. \
     -I=/usr/include/opencv4 \
     -I=/install/Debug/include \
     -I=/install/Release/include \
     -L=/install/Debug/lib \
     -L=/install/Release/lib \
     -o $name -std=c++17 \
     $PWD/main.cpp \
     $PWD/our_common.cpp  \
     -lvart-runner \
     ${OPENCV_FLAGS} \
     -lopencv_videoio  \
     -lopencv_imgcodecs \
     -lopencv_highgui \
     -lopencv_imgproc \
     -lopencv_core \
     -lglog \
     -lxir \
     -lunilog \
     -lpthread
else
$CXX -O2 -fno-inline -I. \
     -I${install_prefix_default}.Debug/include \
     -I${install_prefix_default}.Release/include \
     -L${install_prefix_default}.Debug/lib \
     -L${install_prefix_default}.Release/lib \
     -Wl,-rpath=${install_prefix_default}.Debug/lib \
     -Wl,-rpath=${install_prefix_default}.Release/lib \
     -o $name -std=c++17 \
     $PWD/main.cpp \
     $PWD/our_common.cpp  \
     -lvart-runner \
     ${OPENCV_FLAGS} \
     -lopencv_videoio  \
     -lopencv_imgcodecs \
     -lopencv_highgui \
     -lopencv_imgproc \
     -lopencv_core \
     -lglog \
     -lxir \
     -lunilog \
     -lpthread
fi

our_common.cpp

C/C++
offer some necessary function to main.cpp
/*
 * Copyright 2019 Xilinx Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "our_common.h"

#include <cassert>
#include <numeric>

struct Arguments getArguments(int argc, char* argv[]) {
    struct Arguments our_arguments;
    if (argc < 7) 
    {
        std::cerr << "Usage of WDSR demo: ./laparpp num_threads mainbranch_path skipconv_path random_image \
                                height width [input_path]";
        exit(1);
    }
    try {
        our_arguments.num_threads = atoi(argv[1]);
        our_arguments.mainbranch_path  = argv[2];
        our_arguments.skipconv_path  = argv[3];
        our_arguments.height      = atoi(argv[4]);
        our_arguments.width       = atoi(argv[5]);
        our_arguments.random_image = bool(atoi(argv[6]));
    }
    catch (...) {
        LOG(INFO) << "Fail to assign values. " ;
    }

    if (our_arguments.random_image == false) {
        try {
            our_arguments.input_path = argv[7];
        }
        catch (...) {
            std::cerr << "Fail to get input path of the images." ;
            exit(1);
        }
    }
    LOG(INFO) << "====================== Basic Information ======================" ;
    LOG(INFO) << "number of threads: " << our_arguments.num_threads ; 
    LOG(INFO) << "mainbranch model path:  " << our_arguments.mainbranch_path ;
    LOG(INFO) << "skipconv model path:  " << our_arguments.skipconv_path ;
    LOG(INFO) << "image height:      " << our_arguments.height ;
    LOG(INFO) << "image width:       " << our_arguments.width ;
    if (our_arguments.random_image == true) {
        LOG(INFO) << "Use random image. " ;
    }
    else {
        LOG(INFO) << "input image path:  " << our_arguments.input_path ;
    }
    return our_arguments;
}

int getTensorShape(vart::Runner* runner, GraphInfo* shapes, int cntin,
                   int cntout) {
  auto outputTensors = runner->get_output_tensors();
  auto inputTensors = runner->get_input_tensors();
  if (shapes->output_mapping.empty()) {
    shapes->output_mapping.resize((unsigned)cntout);
    std::iota(shapes->output_mapping.begin(), shapes->output_mapping.end(), 0);
  }
  for (int i = 0; i < cntin; i++) {
    auto dim_num = inputTensors[i]->get_shape().size();
    if (dim_num == 4) {
      shapes->inTensorList[i].channel = inputTensors[i]->get_shape().at(3);
      shapes->inTensorList[i].width = inputTensors[i]->get_shape().at(2);
      shapes->inTensorList[i].height = inputTensors[i]->get_shape().at(1);
      shapes->inTensorList[i].size =
          inputTensors[i]->get_element_num() / inputTensors[0]->get_shape().at(0);
    } else if (dim_num == 2) {
      shapes->inTensorList[i].channel = inputTensors[i]->get_shape().at(1);
      shapes->inTensorList[i].width = 1;
      shapes->inTensorList[i].height = 1;
      shapes->inTensorList[i].size =
          inputTensors[i]->get_element_num() / inputTensors[0]->get_shape().at(0);
    }
  }
  for (int i = 0; i < cntout; i++) {
    auto dim_num = outputTensors[shapes->output_mapping[i]]->get_shape().size();
    if (dim_num == 4) {
      shapes->outTensorList[i].channel =
          outputTensors[shapes->output_mapping[i]]->get_shape().at(3);
      shapes->outTensorList[i].width =
          outputTensors[shapes->output_mapping[i]]->get_shape().at(2);
      shapes->outTensorList[i].height =
          outputTensors[shapes->output_mapping[i]]->get_shape().at(1);
      shapes->outTensorList[i].size =
          outputTensors[shapes->output_mapping[i]]->get_element_num() /
          outputTensors[shapes->output_mapping[0]]->get_shape().at(0);
    } else if (dim_num == 2) {
      shapes->outTensorList[i].channel =
          outputTensors[shapes->output_mapping[i]]->get_shape().at(1);
      shapes->outTensorList[i].width = 1;
      shapes->outTensorList[i].height = 1;
      shapes->outTensorList[i].size =
          outputTensors[shapes->output_mapping[i]]->get_element_num() /
          outputTensors[shapes->output_mapping[0]]->get_shape().at(0);
    }
  }
  return 0;
}

static int find_tensor(std::vector<const xir::Tensor*> tensors,
                       const std::string& name) {
  int ret = -1;
  for (auto i = 0u; i < tensors.size(); ++i) {
    if (tensors[i]->get_name().find(name) != std::string::npos) {
      ret = (int)i;
      break;
    }
  }
  assert(ret != -1);
  return ret;
}
int getTensorShape(vart::Runner* runner, GraphInfo* shapes, int cntin,
                   std::vector<std::string> output_names) {
  for (auto i = 0u; i < output_names.size(); ++i) {
    auto idx = find_tensor(runner->get_output_tensors(), output_names[i]);
    shapes->output_mapping.push_back(idx);
  }
  getTensorShape(runner, shapes, cntin, (int)output_names.size());
  return 0;
}

void ListImages(string const& path, vector<string>& images) {
/**
 * @brief put image names to a vector
 *
 * @param path - path of the image direcotry
 * @param images - the vector of image name
 *
 * @return none
 */
    images.clear();
    struct dirent* entry;

    /*Check if path is a valid directory path. */
    struct stat s;
    lstat(path.c_str(), &s);
    if (!S_ISDIR(s.st_mode)) {
        fprintf(stderr, "Error: %s is not a valid directory!\n", path.c_str());
        exit(1);
    }

    DIR* dir = opendir(path.c_str());
    if (dir == nullptr) {
        fprintf(stderr, "Error: Open %s path failed.\n", path.c_str());
        exit(1);
    }

    while ((entry = readdir(dir)) != nullptr) {
        if (entry->d_type == DT_REG || entry->d_type == DT_UNKNOWN) {
            string name = entry->d_name;
            string ext = name.substr(name.find_last_of(".") + 1);
            if ((ext == "JPEG") || (ext == "jpeg") || (ext == "JPG") ||
                (ext == "jpg") || (ext == "PNG") || (ext == "png")) {
                images.push_back(name);
            }
        }
    }

    closedir(dir);
}

void LoadWords(string const& path, vector<string>& kinds) {
/**
 * @brief load kinds from file to a vector
 *
 * @param path - path of the kinds file
 * @param kinds - the vector of kinds string
 *
 * @return none
 */
  kinds.clear();
  ifstream fkinds(path);
  if (fkinds.fail()) {
    fprintf(stderr, "Error : Open %s failed.\n", path.c_str());
    exit(1);
  }
  string kind;
  while (getline(fkinds, kind)) {
    kinds.push_back(kind);
  }

  fkinds.close();
}

void printTensorShape(GraphInfo shapes, int input_num, int output_num)
{
    // print input tensor list 
    LOG(INFO) << "========== Input Tensor List ==========" ;
    struct TensorShape* inTensorList = shapes.inTensorList;
    for (int i = 0; i < input_num; i++) {
        LOG(INFO) << "< " << inTensorList[i].size <<
            ", " << inTensorList[i].channel << 
            ", " << inTensorList[i].height <<
            ", " << inTensorList[i].width << " >.";
    }
            
    // print output tensor list 
    LOG(INFO) << "========== Output Tensor List ==========" ;
    struct TensorShape* outTensorList = shapes.outTensorList;
    for (int i = 0; i < output_num; i++) {
        LOG(INFO) << "< " << outTensorList[i].size <<
            ", " << outTensorList[i].channel << 
            ", " << outTensorList[i].height <<
            ", " << outTensorList[i].width << " >.";
    }
    return ;
}

void CPUMulSum(std::vector<std::unique_ptr<xir::Tensor>> inputs_1, 
        std::vector<std::unique_ptr<xir::Tensor>> inputs_2)
{
}

our_common.h

C Header File
head file of our_common.cpp
/*
 * Copyright 2019 Xilinx Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef __OUR_COMMON_H__
#define __OUR_COMMON_H__

#include <glog/logging.h>
#include <sys/stat.h> // store the status information for a file
#include <iostream>
#include <algorithm>
#include <fstream>
#include <mutex>    // std::mutex, a lockable object for multithreading programming
#include <stdlib.h> // some general purpose functions, e.g., dynamic memory management, 
                    //              random generation, communication, sorting, stc. 
#include <unistd.h> // standard constants and types
#include <chrono>   // date and time utilities
#include <assert.h> 
#include <dirent.h> // retrieve information about files and directories
#include <stdio.h>
#include <opencv2/opencv.hpp>
#include <queue>
#include <string>
#include <thread>
#include <vector>
#include <cmath>

        /* header file for Vitis AI unified API */
#include <vart/mm/host_flat_tensor_buffer.hpp>
#include <vart/runner.hpp>
#include <vart/runner_ext.hpp>
#include <xir/graph/graph.hpp>
#include <xir/tensor/tensor.hpp>
#include <xir/util/data_type.hpp>

struct Arguments {
    // 0 file name
    int num_threads = 1;        // 1
    std::string mainbranch_path;     // 2
    std::string skipconv_path;     // 3
    // int channel = 1;
    int height = 360;           // 4
    int width = 640;            // 5
    bool random_image = true;   // 6
    std::string input_path;     // 7
};

struct TensorShape {
  unsigned int height;
  unsigned int width;
  unsigned int channel;
  unsigned int size;
};

struct GraphInfo {
  struct TensorShape* inTensorList;
  struct TensorShape* outTensorList;
  std::vector<int> output_mapping;
};

struct Arguments getArguments(int argc, char* argv[]);

int getTensorShape(vart::Runner* runner, GraphInfo* shapes, int cntin,
                   const std::vector<std::string> output_names);
int getTensorShape(vart::Runner* runner, GraphInfo* shapes, int cntin,
                   int cnout);

void printTensorShape(GraphInfo shapes, int input_num, int output_num);

inline std::vector<std::unique_ptr<xir::Tensor>> cloneTensorBuffer(
    const std::vector<const xir::Tensor*>& tensors) {
  auto ret = std::vector<std::unique_ptr<xir::Tensor>>{};
  auto type = xir::DataType::FLOAT;
  ret.reserve(tensors.size());
  for (const auto& tensor : tensors) {
    ret.push_back(std::unique_ptr<xir::Tensor>(
        xir::Tensor::create(tensor->get_name(), tensor->get_shape(),
                            xir::DataType{type, sizeof(float) * 8u})));
  }
  return ret;
}

inline std::vector<const xir::Subgraph*> get_dpu_subgraph(
    const xir::Graph* graph) {
  auto root = graph->get_root_subgraph();
  auto children = root->children_topological_sort();
  auto ret = std::vector<const xir::Subgraph*>();
  for (auto c : children) {
    CHECK(c->has_attr("device"));
    auto device = c->get_attr<std::string>("device");
    if (device == "DPU") {
      ret.emplace_back(c);
    }
  }
  return ret;
}

class CpuFlatTensorBuffer : public vart::TensorBuffer {
 public:
  explicit CpuFlatTensorBuffer(void* data, const xir::Tensor* tensor)
      : TensorBuffer{tensor}, data_{data} {}
  virtual ~CpuFlatTensorBuffer() = default;

 public:
  virtual std::pair<uint64_t, size_t> data(
      const std::vector<int> idx = {}) override {
    uint32_t size = std::ceil(tensor_->get_data_type().bit_width / 8.f);
    if (idx.size() == 0) {
      return {reinterpret_cast<uint64_t>(data_),
              tensor_->get_element_num() * size};
    }
    auto dims = tensor_->get_shape();
    auto offset = 0;
    for (auto k = 0; k < tensor_->get_shape().size(); k++) {
      auto stride = 1;
      for (auto m = k + 1; m < tensor_->get_shape().size(); m++) {
        stride *= dims[m];
      }
      offset += idx[k] * stride;
    }
    auto elem_num = tensor_->get_element_num();
    return {reinterpret_cast<uint64_t>(data_) + offset * size,
            (elem_num - offset) * size};
  }

 private:
  void* data_;
};

void ListImages(string const& path, vector<string>& images);
void LoadWords(string const& path, vector<string>& kinds);
void CPUMulSum(std::vector<std::unique_ptr<xir::Tensor>> inputs_1, std::vector<std::unique_ptr<xir::Tensor>> inputs_2);

#endif

MainBranch.py

Python
model1 divided from wdsr
import torch
from torch import nn 

class ResBlock(nn.Module):
    def __init__(self, n_feats, expansion_ratio, res_scale=1.0):
        super(ResBlock, self).__init__()
        self.res_scale = torch.tensor(res_scale)
        self.module = nn.Sequential(
            nn.Conv2d(n_feats, n_feats * expansion_ratio, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(n_feats * expansion_ratio, n_feats, kernel_size=3, padding=1)
        )

    def forward(self, x):
        return x + self.module(x)# * self.res_scale

class MainBranch(nn.Module):
    def __init__(self, args):
        super(MainBranch, self).__init__()
        head = [nn.Conv2d(3, args.n_feats, kernel_size=3, padding=1)]
        body = [ResBlock(args.n_feats, args.expansion_ratio, args.res_scale) for _ in range(args.n_res_blocks)]
        tail_conv = [nn.Conv2d(args.n_feats, 3 * (args.scale ** 2), kernel_size = 3, padding=1)]

        self.head = nn.Sequential(*head)
        self.body = nn.Sequential(*body)
        self.tail_conv = nn.Sequential(*tail_conv)

    def forward(self, x):
        x_1 = self.head(x)
        x_2 = self.body(x_1)
        x_3 = self.tail_conv(x_2)
        return x_3

SkipConv.py

Python
model2 divided from wdsr
import torch 
from torch import nn

class SkipConv(nn.Module):
    def __init__(self, args):
        super(SkipConv, self).__init__()
        self.skip = nn.Conv2d(3, 3 * (args.scale ** 2), kernel_size = 5, padding=2)

    def forward(self, x):
        return self.skip(x)

quantize.py

Python
quantize our model
from utils import * 
import torch
from pytorch_nndct.apis import torch_quantizer, dump_xmodel

if __name__ == '__main__':
    args = get_args()
    channel = args.channel 
    height  = args.height
    width   = args.width
    # original = torch.load('epoch_30.pth',map_location=torch.device('cpu'))
    # new={"model_state_dict":original["model_state_dict"]}
    if args.model == 'skip':
        from SkipConv import SkipConv
        model = SkipConv(args)
        model.load_state_dict(torch.load('skip.pth',map_location=torch.device('cpu')))
    elif args.model == 'main':
        from MainBranch import MainBranch
        model = MainBranch(args)
        model.load_state_dict(torch.load('main.pth',map_location=torch.device('cpu')))
    else:
        raise NotImplementedError("Unsupported model")

    model.eval()

    dummy_inputs = torch.randn([1, args.channel, args.height, args.width])
    print("dummy_inputs.shape: ", dummy_inputs.shape)
    quantizer = torch_quantizer('calib', model, dummy_inputs)
    quantized_model = quantizer.quant_model
    tune_loader = []
    tune_loader.append(torch.randn([1, args.channel, args.height, args.width]))
    quantizer.fast_finetune(evaluate, (quantized_model, tune_loader))
    quantizer.load_ft_param()
    quantizer.export_quant_config()
    quantizer.export_xmodel(deploy_check=False)

    quantizer = torch_quantizer('test', model, dummy_inputs)
    quantized_model = quantizer.quant_model
    val_loader = []
    val_loader.append(torch.randn([1, args.channel, args.height, args.width]))
    quantizer.fast_finetune(evaluate, (quantized_model, val_loader))
    quantizer.load_ft_param()
    quantizer.export_quant_config()
    quantizer.export_xmodel(deploy_check=False)

    os.rename('quantize_result', args.output)
    

Credits

Freya Wang

Freya Wang

1 project • 1 follower
Thanks to Chen Wu.

Comments