Hackster is hosting Impact Spotlights: AI. Watch the stream live on Thursday!Hackster is hosting Impact Spotlights: AI. Stream on Thursday!
mh7289
Published © MIT

iOpran

Streamline your laundry experience with the latest state of the art machine learning model for wash cycle recognition.

IntermediateWork in progress150
iOpran

Things used in this project

Hardware components

Nano 33 BLE Sense
Arduino Nano 33 BLE Sense
×1
Android device
Android device
Or Bluetooth enabled computer
×1
Powerbank
×1
USB-A to Micro-USB Cable
USB-A to Micro-USB Cable
×1

Software apps and online services

iOpran homepage

Story

Read more

Schematics

peremo_V5h0FgnZLK.apk

peremo_ltKZ6You7o.aia

Code

peremo.ino

C/C++
/* Edge Impulse Arduino examples
 * Copyright (c) 2021 EdgeImpulse Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

/* Includes ---------------------------------------------------------------- */
#include <Pralnica1.0_inferencing.h>
#include <Arduino_LSM9DS1.h>
#include <ArduinoBLE.h>
#include <stdio.h>


/* Constant defines -------------------------------------------------------- */
#define CONVERT_G_TO_MS2    9.80665f
#define MAX_ACCEPTED_RANGE  2.0f        // starting 03/2022, models are generated setting range to +-2, but this example use Arudino library which set range to +-4g. If you are using an older model, ignore this value and use 4.0f instead

/* Private variables ------------------------------------------------------- */
static bool debug_nn = false; // Set this to true to see e.g. features generated from the raw signal
static uint32_t run_inference_every_ms = 200;
static rtos::Thread inference_thread(osPriorityLow);
static float buffer[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE] = { 0 };
static float inference_buffer[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE];
static bool serial_enabled = false;

/* Forward declaration */
void run_inference_background();

/**
* @brief      Arduino setup function
*/

BLEService pralnicaService("9308c608-3189-47ad-abaa-f32e0b4fadc2");

// Bluetooth Low Energy Pranje
BLEUnsignedCharCharacteristic pralnicaState("4789208a-ae92-11ec-b909-0242ac120002",  BLERead | BLENotify);
BLEDevice central;


void setup()
{
    // put your setup code here, to run once:
    if (serial_enabled) {
        Serial.begin(115200);
        while (!Serial);
        Serial.println("Edge Impulse Inferencing Demo");
    }

    if (!IMU.begin()) {
        ei_printf("Failed to initialize IMU!\r\n");
    }
    else {
        ei_printf("IMU initialized\r\n");
    }

    if (EI_CLASSIFIER_RAW_SAMPLES_PER_FRAME != 3) {
        ei_printf("ERR: EI_CLASSIFIER_RAW_SAMPLES_PER_FRAME should be equal to 3 (the 3 sensor axes)\n");
        return;
    }

    inference_thread.start(mbed::callback(&run_inference_background));

    pinMode(LED_BUILTIN, OUTPUT); // initialize the built-in LED pin to indicate when a central is connected

    // begin initialization
    if (!BLE.begin()) {
      ei_printf("starting BLE failed!");
      while (1);
    }

    /* Set a local name for the Bluetooth Low Energy device
        This name will appear in advertising packets
        and can be used by remote devices to identify this Bluetooth Low Energy device
        The name can be changed but maybe be truncated based on space left in advertisement packet
    */
    BLE.setLocalName("Pralnica1.1");
    BLE.setDeviceName("Pralnica1.1");
    BLE.setAdvertisedService(pralnicaService); // add the service UUID
    pralnicaService.addCharacteristic(pralnicaState);
    BLE.addService(pralnicaService);

    /* Start advertising Bluetooth Low Energy.  It will start continuously transmitting Bluetooth Low Energy
        advertising packets and will be visible to remote Bluetooth Low Energy central devices
        until it receives a new connection */

    // start advertising
    BLE.advertise();

    ei_printf("Bluetooth device active, waiting for connections...");

    while(1) {
      central = BLE.central();
      if (central) {
        ei_printf("Connected to central:");
        ei_printf("%s", central.address());
        break;
      }
    }
}

/**
* @brief      Printf function uses vsnprintf and output using Arduino Serial
*
* @param[in]  format     Variable argument list
*/
void ei_printf(const char *format, ...) {
   static char print_buf[1024] = { 0 };

   va_list args;
   va_start(args, format);
   int r = vsnprintf(print_buf, sizeof(print_buf), format, args);
   va_end(args);

   if (r > 0) {
       if (serial_enabled) Serial.write(print_buf);
   }
}

/**
 * @brief Return the sign of the number
 * 
 * @param number 
 * @return int 1 if positive (or 0) -1 if negative
 */
float ei_get_sign(float number) {
    return (number >= 0.0) ? 1.0 : -1.0;
}

/**
 * @brief      Run inferencing in the background.
 */
void run_inference_background()
{
    // wait until we have a full buffer
    delay((EI_CLASSIFIER_INTERVAL_MS * EI_CLASSIFIER_RAW_SAMPLE_COUNT) + 100);

    // This is a structure that smoothens the output result
    // With the default settings 70% of readings should be the same before classifying.
    ei_classifier_smooth_t smooth;
    ei_classifier_smooth_init(&smooth, 10 /* no. of readings */, 7 /* min. readings the same */, 0.8 /* min. confidence */, 0.3 /* max anomaly */);

    while (1) {
        // copy the buffer
        memcpy(inference_buffer, buffer, EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE * sizeof(float));

        // Turn the raw buffer in a signal which we can the classify
        signal_t signal;
        int err = numpy::signal_from_buffer(inference_buffer, EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE, &signal);
        if (err != 0) {
            ei_printf("Failed to create signal from buffer (%d)\n", err);
            return;
        }

        // Run the classifier
        ei_impulse_result_t result = { 0 };

        err = run_classifier(&signal, &result, debug_nn);
        if (err != EI_IMPULSE_OK) {
            ei_printf("ERR: Failed to run classifier (%d)\n", err);
            return;
        }

        // print the predictions
        ei_printf("Predictions ");
        ei_printf("(DSP: %d ms., Classification: %d ms., Anomaly: %d ms.)",
            result.timing.dsp, result.timing.classification, result.timing.anomaly);
        ei_printf(": ");

        // ei_classifier_smooth_update yields the predicted label
        const char *prediction = ei_classifier_smooth_update(&smooth, &result);
        ei_printf("%s ", prediction);
        // print the cumulative results
        ei_printf(" [ ");
        for (size_t ix = 0; ix < smooth.count_size; ix++) {
            ei_printf("%u", smooth.count[ix]);
            if (ix != smooth.count_size + 1) {
                ei_printf(", ");
            }
            else {
              ei_printf(" ");
            }
        }
        ei_printf("]\n");
        if (central.connected()) {
          if (!strcmp(prediction, "wash")) {
            pralnicaState.writeValue(0);
          } else if (!strcmp(prediction, "spin")) {
            pralnicaState.writeValue(1);
          } else if (!strcmp(prediction, "idle")) {
            pralnicaState.writeValue(2);
          } else if (!strcmp(prediction, "undefined")) {
            pralnicaState.writeValue(3);
          } else {
            pralnicaState.writeValue(4);            
          }
          
        }
        delay(run_inference_every_ms);
    }

    ei_classifier_smooth_free(&smooth);
}

/**
* @brief      Get data and run inferencing
*
* @param[in]  debug  Get debug info if true
*/
void loop()
{
    while (1) {
        // Determine the next tick (and then sleep later)
        uint64_t next_tick = micros() + (EI_CLASSIFIER_INTERVAL_MS * 1000);

        // roll the buffer -3 points so we can overwrite the last one
        numpy::roll(buffer, EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE, -3);

        // read to the end of the buffer
        IMU.readAcceleration(
            buffer[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE - 3],
            buffer[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE - 2],
            buffer[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE - 1]
        );

        for (int i = 0; i < 3; i++) {
            if (fabs(buffer[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE - 3 + i]) > MAX_ACCEPTED_RANGE) {
                buffer[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE - 3 + i] = ei_get_sign(buffer[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE - 3 + i]) * MAX_ACCEPTED_RANGE;
            }
        }

        buffer[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE - 3] *= CONVERT_G_TO_MS2;
        buffer[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE - 2] *= CONVERT_G_TO_MS2;
        buffer[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE - 1] *= CONVERT_G_TO_MS2;

        // and wait for next tick
        uint64_t time_to_wait = next_tick - micros();
        delay((int)floor((float)time_to_wait / 1000.0f));
        delayMicroseconds(time_to_wait % 1000);
    }
}

#if !defined(EI_CLASSIFIER_SENSOR) || EI_CLASSIFIER_SENSOR != EI_CLASSIFIER_SENSOR_ACCELEROMETER
#error "Invalid model for current sensor"
#endif

Credits

mh7289
1 project • 0 followers
Contact

Comments

Please log in or sign up to comment.