Moudud Hassan
Created June 29, 2020

Facemask & Social Distancing Using AI

Face Mask Detection and social distancing System using Artificial Intelligence to prevent covid-19

AdvancedFull instructions provided24 hours44
Facemask & Social Distancing Using AI

Things used in this project

Hardware components

NVIDIA Jetson Nano Developer Kit
×1
Camera Module V2
Raspberry Pi Camera Module V2
×1

Story

Read more

Schematics

Full description

Code

real_time_yolo.py

Python
import cv2
import numpy as np
import time
import math

# Load Yolo
net = cv2.dnn.readNet("yolov3_training_last.weights", "cfg/yolov3_testing.cfg")
classes = []
with open("coco.names", "r") as f:
    classes = [line.strip() for line in f.readlines()]
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
colors = np.random.uniform(0, 255, size=(len(classes), 3))

# Loading image
cap = cv2.VideoCapture(0)

font = cv2.FONT_HERSHEY_PLAIN
starting_time = time.time()
frame_id = 0
while True:
    _, frame = cap.read()
    frame_id += 1

    height, width, channels = frame.shape

    # Detecting objects
    blob = cv2.dnn.blobFromImage(frame, 0.00392, (416, 416), (0, 0, 0), True, crop=False)

    net.setInput(blob)
    outs = net.forward(output_layers)

    # Showing informations on the screen
    class_ids = []
    confidences = []
    boxes = []
    for out in outs:
        for detection in out:
            scores = detection[5:]
            class_id = np.argmax(scores)
            confidence = scores[class_id]
            if confidence > 0.2:
                # Object detected
                center_x = int(detection[0] * width)
                center_y = int(detection[1] * height)
                w = int(detection[2] * width)
                h = int(detection[3] * height)

                # Rectangle coordinates
                x = int(center_x - w / 2)
                y = int(center_y - h / 2)

                boxes.append([x, y, w, h])
                confidences.append(float(confidence))
                class_ids.append(class_id)

    indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.8, 0.3)
    ind = []
    for i in range(0,len(class_ids)):
        if(class_ids[i]==0):
            ind.append(i)
    a = []
    b = []

    if len(indexes) > 0:
            for i in indexes.flatten():
                (x, y) = (boxes[i][0], boxes[i][1])
                (w, h) = (boxes[i][2], boxes[i][3])
                a.append(x)
                b.append(y)
                
    distance=[] 
    nsd = []
    for i in range(0,len(a)-1):
        for k in range(1,len(a)):
            if(k==i):
                break
            else:
                x_dist = (a[k] - a[i])
                y_dist = (b[k] - b[i])
                d = math.sqrt(x_dist * x_dist + y_dist * y_dist)
                #print(d)
                distance.append(d)
                if(d <=300):
                    nsd.append(i)
                    nsd.append(k)
                nsd = list(dict.fromkeys(nsd))
                #print(nsd)
    for i in range(len(boxes)):
        if i in indexes:
            x, y, w, h = boxes[i]
            label = str(classes[class_ids[i]])
            confidence = confidences[i]
            color = colors[class_ids[i]]
            cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
            cv2.putText(frame, label + " " + str(round(confidence, 2)), (x, y + 30), font, 3, color, 3)



    elapsed_time = time.time() - starting_time
    fps = frame_id / elapsed_time
    cv2.putText(frame, "FPS: " + str(round(fps, 2)), (10, 50), font, 4, (0, 0, 0), 3)
    color = (0, 0, 255) 
    for i in nsd:
        (x, y) = (boxes[i][0], boxes[i][1])
        (w, h) = (boxes[i][2], boxes[i][3])
        cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
        text = "Alert"
        cv2.putText(frame, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX,0.5, color, 2)
    color = (0, 255, 0) 
    if len(indexes) > 0:
        for i in indexes.flatten():
            if (i in nsd):
                break
            else:
                (x, y) = (boxes[i][0], boxes[i][1])
                (w, h) = (boxes[i][2], boxes[i][3])
                cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
                text = 'OK'
                cv2.putText(frame, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX,0.5, color, 2)
    cv2.imshow("Image", frame)
    key = cv2.waitKey(1)
    if key == 27:
        break

cap.release()
cv2.destroyAllWindows()

Credits

Moudud Hassan

Moudud Hassan

1 project • 1 follower

Comments