import cv2
import numpy as np
import time
import math
# Load Yolo
net = cv2.dnn.readNet("yolov3_training_last.weights", "cfg/yolov3_testing.cfg")
classes = []
with open("coco.names", "r") as f:
classes = [line.strip() for line in f.readlines()]
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
colors = np.random.uniform(0, 255, size=(len(classes), 3))
# Loading image
cap = cv2.VideoCapture(0)
font = cv2.FONT_HERSHEY_PLAIN
starting_time = time.time()
frame_id = 0
while True:
_, frame = cap.read()
frame_id += 1
height, width, channels = frame.shape
# Detecting objects
blob = cv2.dnn.blobFromImage(frame, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(output_layers)
# Showing informations on the screen
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.2:
# Object detected
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
# Rectangle coordinates
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.8, 0.3)
ind = []
for i in range(0,len(class_ids)):
if(class_ids[i]==0):
ind.append(i)
a = []
b = []
if len(indexes) > 0:
for i in indexes.flatten():
(x, y) = (boxes[i][0], boxes[i][1])
(w, h) = (boxes[i][2], boxes[i][3])
a.append(x)
b.append(y)
distance=[]
nsd = []
for i in range(0,len(a)-1):
for k in range(1,len(a)):
if(k==i):
break
else:
x_dist = (a[k] - a[i])
y_dist = (b[k] - b[i])
d = math.sqrt(x_dist * x_dist + y_dist * y_dist)
#print(d)
distance.append(d)
if(d <=300):
nsd.append(i)
nsd.append(k)
nsd = list(dict.fromkeys(nsd))
#print(nsd)
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
confidence = confidences[i]
color = colors[class_ids[i]]
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
cv2.putText(frame, label + " " + str(round(confidence, 2)), (x, y + 30), font, 3, color, 3)
elapsed_time = time.time() - starting_time
fps = frame_id / elapsed_time
cv2.putText(frame, "FPS: " + str(round(fps, 2)), (10, 50), font, 4, (0, 0, 0), 3)
color = (0, 0, 255)
for i in nsd:
(x, y) = (boxes[i][0], boxes[i][1])
(w, h) = (boxes[i][2], boxes[i][3])
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
text = "Alert"
cv2.putText(frame, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX,0.5, color, 2)
color = (0, 255, 0)
if len(indexes) > 0:
for i in indexes.flatten():
if (i in nsd):
break
else:
(x, y) = (boxes[i][0], boxes[i][1])
(w, h) = (boxes[i][2], boxes[i][3])
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
text = 'OK'
cv2.putText(frame, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX,0.5, color, 2)
cv2.imshow("Image", frame)
key = cv2.waitKey(1)
if key == 27:
break
cap.release()
cv2.destroyAllWindows()
Comments