Darrell Keller
Published

Photoresistor Light

Change the LED brightness using the photoresistor.

BeginnerWork in progress1 hour1,265
Photoresistor Light

Things used in this project

Story

Read more

Schematics

schem

Code

photoresistor code

C/C++
changes ligh
// -----------------------------------------
// Function and Variable with Photoresistors
// -----------------------------------------
// In this example, we're going to register a Particle.variable() with the cloud so that we can read brightness levels from the photoresistor.
// We'll also register a Particle.function so that we can turn the LED on and off remotely.

// We're going to start by declaring which pins everything is plugged into.

int led = D0; // This is where your LED is plugged in. The other side goes to a resistor connected to GND.

int photoresistor = A0; // This is where your photoresistor is plugged in. The other side goes to the "power" pin (below).

int power = A5; // This is the other end of your photoresistor. The other side is plugged into the "photoresistor" pin (above).
// The reason we have plugged one side into an analog pin instead of to "power" is because we want a very steady voltage to be sent to the photoresistor.
// That way, when we read the value from the other side of the photoresistor, we can accurately calculate a voltage drop.

int analogvalue; // Here we are declaring the integer variable analogvalue, which we will use later to store the value of the photoresistor.


// Next we go into the setup function.

void setup() {

    // First, declare all of our pins. This lets our device know which ones will be used for outputting voltage, and which ones will read incoming voltage.
    pinMode(led,OUTPUT); // Our LED pin is output (lighting up the LED)
    pinMode(photoresistor,INPUT);  // Our photoresistor pin is input (reading the photoresistor)
    pinMode(power,OUTPUT); // The pin powering the photoresistor is output (sending out consistent power)

    // Next, write the power of the photoresistor to be the maximum possible, so that we can use this for power.
    digitalWrite(power,HIGH);

    // We are going to declare a Particle.variable() here so that we can access the value of the photoresistor from the cloud.
    Particle.variable("analogvalue", &analogvalue, INT);
    // This is saying that when we ask the cloud for "analogvalue", this will reference the variable analogvalue in this app, which is an integer variable.

    // We are also going to declare a Particle.function so that we can turn the LED on and off from the cloud.
    Particle.function("led" ,ledToggle);
    // This is saying that when we ask the cloud for the function "led", it will employ the function ledToggle() from this app.

}


// Next is the loop function...

void loop() {

    // check to see what the value of the photoresistor is and store it in the int variable analogvalue
    analogvalue = analogRead(photoresistor);
//    if(analogvalue>100){
       // for( int i=0; i<250; i++)
       //bypassing the cloud and using analog value instead
          analogWrite(led,analogvalue);
        
//    }
 //Particle.publish("toot", String::format("value: %d", analogvalue));
// delay (10); //0);
}

// Finally, we will write out our ledToggle function, which is referenced by the Particle.function() called "led"

int ledToggle(String command) {

    if (command=="on") {
        digitalWrite(led,HIGH);
        return 1;
    }
    else if (command=="off") {
        digitalWrite(led,LOW);
        return 0;
    }
    else {
        return -1;
    }
}

Credits

Darrell Keller

Darrell Keller

0 projects • 1 follower

Comments