from scipy.spatial import distance as dist
from imutils import perspective
from imutils import contours
import numpy as np
import argparse
import imutils
import cv2
import math
class point:
x = 0
y = 0
plL = point()
plR = point()
plU = point()
plD = point()
def midpoint(ptA, ptB):
return ((ptA[0] + ptB[0]) * 0.5, (ptA[1] + ptB[1]) * 0.5)
cam = cv2.VideoCapture(0)
while True:
_, image = cam.read()
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (7, 7), 0)
edged = cv2.Canny(gray, 50, 100)
edged = cv2.dilate(edged, None, iterations=1)
edged = cv2.erode(edged, None, iterations=1)
contours = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]
colors = ((0, 0, 255), (240, 0, 159), (0, 165, 255), (255, 255, 0),
(255, 0, 255))
refObj = None
pixelsPerMetric = None
for c in contours:
if cv2.contourArea(c) < 100:
continue
box = cv2.minAreaRect(c)
box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box)
box = np.array(box, dtype="int")
box = perspective.order_points(box)
cX = np.average(box[:, 0])
cY = np.average(box[:, 1])
if refObj is None:
(tl, tr, br, bl) = box
(tlblX, tlblY) = midpoint(tl, bl)
(trbrX, trbrY) = midpoint(tr, br)
D = dist.euclidean((tlblX, tlblY), (trbrX, trbrY))
refObj = (box, (cX, cY), D / 2.8)
continue
orig = image.copy()
cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2)
cv2.drawContours(orig, [refObj[0].astype("int")], -1, (0, 255, 0), 2)
refCoords = np.vstack([refObj[0], refObj[1]])
objCoords = np.vstack([box, (cX, cY)])
plL.x = box[0][0]
plL.y = box[0][1]
plR.x = box[1][0]
plR.y = box[1][1]
plU.x = box[2][0]
plU.y = box[2][1]
plD.x = box[3][0]
plD.y = box[3][1]
for (x, y) in box:
cv2.circle(orig, (int(x), int(y)), 5, (0, 0, 255), -1)
(tl, tr, br, bl) = box
(tltrX, tltrY) = midpoint(tl, tr)
(blbrX, blbrY) = midpoint(bl, br)
(tlblX, tlblY) = midpoint(tl, bl)
(trbrX, trbrY) = midpoint(tr, br)
cv2.circle(orig, (int(tltrX), int(tltrY)), 5, (255, 0, 0), -1)
cv2.circle(orig, (int(blbrX), int(blbrY)), 5, (255, 0, 0), -1)
cv2.circle(orig, (int(tlblX), int(tlblY)), 5, (255, 0, 0), -1)
cv2.circle(orig, (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1)
cv2.line(orig, (int(tltrX), int(tltrY)), (int(blbrX), int(blbrY)),
(255, 0, 255), 2)
cv2.line(orig, (int(tlblX), int(tlblY)), (int(trbrX), int(trbrY)),
(255, 0, 255), 2)
dA = dist.euclidean((tltrX, tltrY), (blbrX, blbrY))
dB = dist.euclidean((tlblX, tlblY), (trbrX, trbrY))
if pixelsPerMetric is None:
pixelsPerMetric = 27.6
dimA = dA / (pixelsPerMetric * 4)
dimB = dB / pixelsPerMetric
cv2.putText(orig, "{:.1f}cm".format(dimA),
(int(tltrX - 15), int(tltrY - 10)), cv2.FONT_HERSHEY_SIMPLEX,
0.65, (255, 255, 255), 2)
cv2.putText(orig, "{:.1f}cm".format(dimB),
(int(trbrX + 10), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX,
0.65, (255, 255, 255), 2)
rp1 = point()
rp2 = point()
Angle = 0
if (dA >= dB):
rp1.x = tltrX
rp1.y = tltrY
rp2.x = blbrX
rp2.y = blbrY
else:
rp1.x = tlblX
rp1.y = tlblY
rp2.x = trbrX
rp2.y = trbrY
delX = (rp2.x - rp1.x) / (math.sqrt(((rp2.x - rp1.x) ** 2) + ((rp2.y - rp1.y) ** 2)))
delY = (rp2.y - rp1.y) / (math.sqrt(((rp2.x - rp1.x) ** 2) + ((rp2.y - rp1.y) ** 2)))
cv2.line(orig, (int(rp1.x - delX * 350), int(rp1.y - delY * 350)),
(int(rp2.x + delX * 250), int(rp2.y + delY * 250)), (205, 0, 0), 2)
x, y, z = image.shape
cv2.line(orig, (0, int(y / 3)), (x * 20, int(y / 3)), (0, 0, 0), 2)
if rp2.x - rp1.x != 0:
gradient = (rp2.y - rp1.y) / (rp2.x - rp1.x)
Angle = math.atan(gradient)
Angle = Angle * 57.2958
if Angle < 0:
Angle = Angle + 180
else:
Angle = 90
cv2.putText(orig, "{:.4f}".format(Angle) + " Degrees",
(330, 460), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 255), 2)
for ((xB, yB), color) in zip(objCoords, colors):
cv2.circle(orig, (int(xB), int(yB)), 5, color, -1)
cv2.imshow("Image", orig)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
Comments