//#############################################################################
// FILE: labstarter_main.c
//
// TITLE: Final Project
//#############################################################################
// Included Files
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <math.h>
#include <time.h>
#include <limits.h>
#include "F28x_Project.h"
#include "driverlib.h"
#include "device.h"
#include "f28379dSerial.h"
#include "dsp.h"
#include "fpu32/fpu_rfft.h"
#define PI 3.1415926535897932384626433832795
#define TWOPI 6.283185307179586476925286766559
#define HALFPI 1.5707963267948966192313216916398
//*****************************************************************************
// the defines for FFT
//*****************************************************************************
#define RFFT_STAGES 10
#define RFFT_SIZE (1 << RFFT_STAGES)
//*****************************************************************************
// the globals
//*****************************************************************************
#ifdef __cplusplus
#pragma DATA_SECTION("FFT_buffer_2")
#else
#pragma DATA_SECTION(pwrSpec, "FFT_buffer_2")
#endif
float pwrSpec[(RFFT_SIZE/2)+1];
float maxpwr = 0;
int16_t maxpwrindex = 0;
#ifdef __cplusplus
#pragma DATA_SECTION("FFT_buffer_2")
#else
#pragma DATA_SECTION(test_output, "FFT_buffer_2")
#endif
float test_output[RFFT_SIZE];
#ifdef __cplusplus
#pragma DATA_SECTION("FFT_buffer_1")
#else
#pragma DATA_SECTION(ping_input, "FFT_buffer_1")
#endif
float ping_input[RFFT_SIZE];
#ifdef __cplusplus
#pragma DATA_SECTION("FFT_buffer_1")
#else
#pragma DATA_SECTION(pong_input, "FFT_buffer_1")
#endif
float pong_input[RFFT_SIZE];
#ifdef __cplusplus
#pragma DATA_SECTION("FFT_buffer_2")
#else
#pragma DATA_SECTION(RFFTF32Coef,"FFT_buffer_2")
#endif //__cplusplus
//! \brief Twiddle Factors
//!
float RFFTF32Coef[RFFT_SIZE];
//! \brief Object of the structure RFFT_F32_STRUCT
//!
RFFT_F32_STRUCT rfft;
//! \brief Handle to the RFFT_F32_STRUCT object
//!
RFFT_F32_STRUCT_Handle hnd_rfft = &rfft;
// Interrupt Service Routines predefinition
__interrupt void cpu_timer0_isr(void);
__interrupt void cpu_timer1_isr(void);
__interrupt void cpu_timer2_isr(void);
__interrupt void SWI_isr(void);
__interrupt void ADCB_isr(void);
__interrupt void SPIB_isr(void);
void setupSpib(void);
void setDACA(float dacouta0);
void init_eQEPs(void);
float readEncRight(void);
float readEncLeft(void);
void serialRXA(serial_t *s, char data);
void setDACA(float dacouta0);
void setDACB(float dacouta1);
// Count variables
uint32_t numTimer0calls = 0;
uint32_t numSWIcalls = 0;
uint32_t numRXA = 0;
uint16_t UARTPrint = 0;
uint16_t LEDdisplaynum = 0;
//Code for Project
int16_t runpong = 0;
int16_t runping = 0;
int16_t pingpong = 0; //fill ping when pingpong = 0, fill pong when pingpong = 1
int16_t countpingpong = 0;
int32_t histogram[512];
// code from lab 4
int16_t adcb0result = 0;
int16_t adcb1result = 0;
float ADCB0volt = 0;
int32_t countADCB = 0;
int32_t countFIRB = 0;
//Code from lab 7
//Lab 7 Ex 1(Code from lab 4)
float ADCA1volt = 0;
int32_t countADCA = 0;
int32_t countFIRA = 0;
float ADCA0volt = 0;
int16_t adca0result = 0;
int16_t adca1result = 0;
//Lab 7 Ex 1(Code from lab 5)
uint16_t updown = 0;
float spivaluevolt1 =0;
float spivaluevolt2 =0;
uint16_t RCSERVO1 =0;
uint16_t RCSERVO2 =0;
int16_t dummy= 0;
int16_t accelXraw = 0;
int16_t accelYraw = 0;
int16_t accelZraw = 0;
float accelx = 0;
float accely = 0;
float accelz = 0;
int16_t gyroXraw = 0;
int16_t gyroYraw = 0;
int16_t gyroZraw = 0;
float gyrox = 0;
float gyroy = 0;
float gyroz = 0;
int16_t Tempraw = 0;
float Tempreading = 0;
//
// Lab 7 Ex 1(lab 6 code)
float LeftWheel = 0;
float RightWheel = 0;
float Leftdistance = 0;
float Rightdistance = 0;
float uLeft = 5.0;
float uRight = 5.0;
float PosRight_K_1 = 0;
float PosLeft_K_1 = 0;
float VLeftK = 0;
float VRightK = 0;
float ErrorLeft = 0;
float ErrorRight = 0;
float Vref = 0;
float VelRight =0;
float VelLeft =0;
float ILeftk = 0;
float IRightk = 0;
float ILeftk_1 = 0;
float IRightk_1 = 0;
float Kp = 3;
float Ki = 25;
float ErrorLeftk_1 = 0;
float ErrorRightk_1 = 0;
float KRightk = 0;
float KLeftk = 0;
float turn = 0;
float eturn = 0;
float kturn = 3;
float Psi_R = 0;
float R_Wh = 0.10625;
float W_R = 0.62;
float O_r = 0;
float O_l =0;
float O_avg = 0;
float O_avgD = 0;
float O_rD = 0;
float O_lD = 0;
float X_RD = 0;
float Y_RD = 0;
float IX_RD = 0;
float IX_RD_1 = 0;
float IY_RD = 0;
float IY_RD_1 = 0;
float O_avgD_1 = 0;
float X_RD_1 =0;
float Y_RD_1 =0;
float LeftWheel_1 = 0;
float RightWheel_1 =0;
float rawright = 0;
float Vleftrad =0;
float Vrightrad =0;
float O_avgthea = 0;
float Vrawleft = 0;
float O_avgvelo = 0;
//end
float LeftAngle = 0;
float RightAngle = 0;
int32_t CountTimerVar = 0;
//Lab 7 Ex 2
// Needed global Variables
float accelx_offset = 0;
float accely_offset = 0;
float accelz_offset = 0;
float gyrox_offset = 0;
float gyroy_offset = 0;
float gyroz_offset = 0;
float accelzBalancePoint = -.76;
int16 IMU_data[9];
uint16_t temp=0;
int16_t doneCal = 0;
float tilt_value = 0;
float tilt_array[4] = {0, 0, 0, 0};
float gyro_value = 0;
float gyro_array[4] = {0, 0, 0, 0};
float LeftWheel1 = 0;
float RightWheel1 = 0;
float LeftWheelArray[4] = {0,0,0,0};
float RightWheelArray[4] = {0,0,0,0};
// Kalman Filter vars
float T = 0.001; //sample rate, 1ms
float Q = 0.01; // made global to enable changing in runtime
float R = 25000;//50000;
float kalman_tilt = 0;
float kalman_P = 22.365;
int16_t SpibNumCalls = -1;
float pred_P = 0;
float kalman_K = 0;
int32_t timecount = 0;
int16_t calibration_state = 0;
int32_t calibration_count = 0;
//end code
//lab 7 ex3
float Ubal = 0.0;
float VelR_K1 = 0.0;
float VelL_K1 = 0.0;
float VelR_k = 0.0;
float VelL_k = 0.0;
float ThetaR_K1 =0.0;
float ThetaL_K1 =0.0;
float ThetaL =0.0;
float ThetaR =0.0;
float K1 = -60;
float K2 = -4.5;
float K3 = -1.1;
float ULeft = 0;
float URight = 0;
//end
//lab 7 ex 4
float WhlDiff = 0.0;
float WhlDiff_1 = 0.0;
float velWhlDiff = 0.0;
float velWhlDiff_1 = 0.0;
float turnref = 0.0;
float turnrate = 0.0;
float errorDiff = 0.0;
float errorDiff_1 = 0.0;
float intDiff = 0.0;
float intDiff_1 = 0.0;
float turnref_1 = 0.0;
float turnrate_1 = 0.0;
float FwdBackOffset = 0.0;
float Kd = 0.0;
float t = 0.0;
float C1 = 0;
float A1 =0;
float f1 =3;
float C2 = 0;
float A2 =0;
float f2 =1;
float state21count = 0;
float state21delaytime =0;
uint16_t State = 1;
uint16_t countA = 0;
uint16_t state = 10;
int16_t TimeCount = 0;
int16_t TimeDely = 0;
//end
//End code from lab 7
//code from lab 4
void setDACA(float dacouta0) {
if (dacouta0 > 3.0) dacouta0 = 3.0;
if (dacouta0 < 0.0) dacouta0 = 0.0;
DacaRegs.DACVALS.bit.DACVALS = dacouta0*1365.0; // perform scaling of 0-3 to 0-4095
}
void setDACB(float dacouta1) {
if (dacouta1 > 3.0) dacouta1 = 3.0;
if (dacouta1 < 0.0) dacouta1 = 0.0;
DacbRegs.DACVALS.bit.DACVALS = dacouta1*1365.0; // perform scaling of 0-3 to 0-4095
}
//Code from lab 7
//Lab 7 Ex 1(Code from lab 4)- Setting up the joystick
__interrupt void ADCA_isr (void)
{
countADCA ++;
adca0result = AdcaResultRegs.ADCRESULT0;
adca1result = AdcaResultRegs.ADCRESULT1;
// Here covert ADCIND0, ADCIND1 to volts
ADCA0volt= adca0result/1365.0; // perform scaling of 0-3 to 0-4095
ADCA1volt= adca1result/1365.0; // perform scaling of 0-3 to 0-4095
// Print ADCIND0 and ADCIND1’s voltage value to TeraTerm every 100ms
// if ((countFIRA % 100) == 0) {
// UARTPrint = 1;
// }
//Code from Lab 5
GpioDataRegs.GPCCLEAR.bit.GPIO66 = 1;
SpibRegs.SPIFFRX.bit.RXFFIL = 8;
SpibRegs.SPITXBUF = ((0x8000) | (0x3A00));
SpibRegs.SPITXBUF = 0;
SpibRegs.SPITXBUF = 0;
SpibRegs.SPITXBUF = 0;
SpibRegs.SPITXBUF = 0;
SpibRegs.SPITXBUF = 0;
SpibRegs.SPITXBUF = 0;
SpibRegs.SPITXBUF = 0;
AdcaRegs.ADCINTFLGCLR.bit.ADCINT1 = 1; //clear interrupt flag
PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;
/// end of code
}
//Lab 7 Ex 1(Code from lab 6)- Setting up the accel/Gyro X,Y,Z
__interrupt void SPIB_isr(void){
// GpioDataRegs.GPCSET.bit.GPIO66 = 1;
dummy = SpibRegs.SPIRXBUF;
accelXraw = SpibRegs.SPIRXBUF;
accelYraw = SpibRegs.SPIRXBUF;
accelZraw = SpibRegs.SPIRXBUF;
Tempraw = SpibRegs.SPIRXBUF;
gyroXraw = SpibRegs.SPIRXBUF;
gyroYraw = SpibRegs.SPIRXBUF;
gyroZraw = SpibRegs.SPIRXBUF;
GpioDataRegs.GPCSET.bit.GPIO66 = 1;
accelx = accelXraw*4.0/32767.0;
accely = accelYraw*4.0/32767.0;
accelz = accelZraw*4.0/32767.0;
Tempreading = Tempraw;
gyrox = gyroXraw*250.0/32767.0;
gyroy = gyroYraw*250.0/32767.0;
gyroz = gyroZraw*250.0/32767.0;
LeftAngle = -readEncLeft();
RightAngle = readEncRight();
// setEPWM2A(uRight);
// setEPWM2B(-uLeft);
if (uLeft > 10 || uLeft < -10){
ILeftk = ILeftk_1;
}
if (uRight > 10 || uRight < -10){
IRightk = IRightk_1;
}
CountTimerVar++;
if ((CountTimerVar %200) == 0) {
UARTPrint = 1;
}
////Lab 7 Ex 2- setting up the Kalman Filter, This code was given to us.
// This could allows the tilt and Gyro value read zero at any angle the
//Code to be copied into SPIB_ISR interrupt function after the IMU measurements have been collected.
// Need to change some of the variables so they could match the the Gyros and Acclc we calcuated
if(calibration_state == 0){
calibration_count++;
if (calibration_count == 2000) {
calibration_state = 1;
calibration_count = 0;
}
} else if(calibration_state == 1){
accelx_offset+=accelx;
accely_offset+=accely;
accelz_offset+=accelz;
gyrox_offset+=gyrox;
gyroy_offset+=gyroy;
gyroz_offset+=gyroz;
calibration_count++;
if (calibration_count == 2000) {
calibration_state = 2;
accelx_offset/=2000.0;
accely_offset/=2000.0;
accelz_offset/=2000.0;
gyrox_offset/=2000.0;
gyroy_offset/=2000.0;
gyroz_offset/=2000.0;
calibration_count = 0;
doneCal = 1;
}
} else if(calibration_state == 2){
accelx -=(accelx_offset);
accely -=(accely_offset);
accelz -=(accelz_offset-accelzBalancePoint);
gyrox -= gyrox_offset;
gyroy -= gyroy_offset;
gyroz -= gyroz_offset;
/*--------------Kalman Filtering code start---------------------------------------------------------------------*/
float tiltrate = (gyrox*PI)/180.0; // rad/s
float pred_tilt, z, y, S;
// Prediction Step
pred_tilt = kalman_tilt + T*tiltrate;
pred_P = kalman_P + Q;
// Update Step
z = -accelz; // Note the negative here due to the polarity of AccelZ
y = z - pred_tilt;
S = pred_P + R;
kalman_K = pred_P/S;
kalman_tilt = pred_tilt + kalman_K*y;
kalman_P = (1 - kalman_K)*pred_P;
SpibNumCalls++;
// Kalman Filter used
tilt_array[SpibNumCalls] = kalman_tilt;
gyro_array[SpibNumCalls] = tiltrate;
LeftWheelArray[SpibNumCalls] = -readEncLeft();
RightWheelArray[SpibNumCalls] = readEncRight();
if (SpibNumCalls >= 3) { // should never be greater than 3
tilt_value = (tilt_array[0] + tilt_array[1] + tilt_array[2] + tilt_array[3])/4.0;
gyro_value = (gyro_array[0] + gyro_array[1] + gyro_array[2] + gyro_array[3])/4.0;
LeftWheel=(LeftWheelArray[0]+LeftWheelArray[1]+LeftWheelArray[2]+LeftWheelArray[3])/4.0;
RightWheel=(RightWheelArray[0]+RightWheelArray[1]+RightWheelArray[2]+RightWheelArray[3])/4.0;
SpibNumCalls = -1;
PieCtrlRegs.PIEIFR12.bit.INTx9 = 1; // Manually cause the interrupt for the SWI
}
}
timecount++;
if((timecount%200) == 0)
{
if(doneCal == 0) {
GpioDataRegs.GPATOGGLE.bit.GPIO31 = 1; // Blink Blue LED while calibrating
}
GpioDataRegs.GPBTOGGLE.bit.GPIO34 = 1; // Always Block Red LED
UARTPrint = 1; // Tell While loop to print
}
SpibRegs.SPIFFRX.bit.RXFFOVFCLR=1; // Clear Overflow flag
SpibRegs.SPIFFRX.bit.RXFFINTCLR=1; // Clear Interrupt flag
PieCtrlRegs.PIEACK.all = PIEACK_GROUP6;
}
//end of Lab 7 Ex 2
//End of code from lab 7!
__interrupt void ADCB_isr (void)
{
countADCB ++;
adcb0result = AdcbResultRegs.ADCRESULT0;
// Here covert ADCIND0, ADCIND1 to volts
ADCB0volt= adcb0result/1365.0; // perform scaling of 0-3 to 0-4095
if (pingpong == 0){
ping_input[countpingpong] = ADCB0volt;
countpingpong ++;
if(countpingpong >= 1024){
countpingpong = 0;
pingpong = 1;
runping = 1;
}
}
else{
pong_input[countpingpong] = ADCB0volt;
countpingpong ++;
if(countpingpong >= 1024){
countpingpong = 0;
pingpong = 0;
runpong = 1;
}
}
// Here write values to DAC channels
setDACA(ADCB0volt);
// Print ADCIND0 and ADCIND1’s voltage value to TeraTerm every 100ms
if ((countADCB % 1000) == 0) {
UARTPrint = 1;
}
AdcbRegs.ADCINTFLGCLR.bit.ADCINT1 = 1; //clear interrupt flag
PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;
}
void main(void)
{
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the F2837xD_SysCtrl.c file.
InitSysCtrl();
InitGpio();
// Blue LED on LuanchPad
GPIO_SetupPinMux(31, GPIO_MUX_CPU1, 0);
GPIO_SetupPinOptions(31, GPIO_OUTPUT, GPIO_PUSHPULL);
GpioDataRegs.GPASET.bit.GPIO31 = 1;
// Red LED on LaunchPad
GPIO_SetupPinMux(34, GPIO_MUX_CPU1, 0);
GPIO_SetupPinOptions(34, GPIO_OUTPUT, GPIO_PUSHPULL);
GpioDataRegs.GPBSET.bit.GPIO34 = 1;
// LED1 and PWM Pin
GPIO_SetupPinMux(22, GPIO_MUX_CPU1, 0);
GPIO_SetupPinOptions(22, GPIO_OUTPUT, GPIO_PUSHPULL);
GpioDataRegs.GPACLEAR.bit.GPIO22 = 1;
// LED2
GPIO_SetupPinMux(94, GPIO_MUX_CPU1, 0);
GPIO_SetupPinOptions(94, GPIO_OUTPUT, GPIO_PUSHPULL);
GpioDataRegs.GPCCLEAR.bit.GPIO94 = 1;
// LED3
GPIO_SetupPinMux(95, GPIO_MUX_CPU1, 0);
GPIO_SetupPinOptions(95, GPIO_OUTPUT, GPIO_PUSHPULL);
GpioDataRegs.GPCCLEAR.bit.GPIO95 = 1;
// LED4
GPIO_SetupPinMux(97, GPIO_MUX_CPU1, 0);
GPIO_SetupPinOptions(97, GPIO_OUTPUT, GPIO_PUSHPULL);
GpioDataRegs.GPDCLEAR.bit.GPIO97 = 1;
// LED5
GPIO_SetupPinMux(111, GPIO_MUX_CPU1, 0);
GPIO_SetupPinOptions(111, GPIO_OUTPUT, GPIO_PUSHPULL);
GpioDataRegs.GPDCLEAR.bit.GPIO111 = 1;
// LED6
GPIO_SetupPinMux(130, GPIO_MUX_CPU1, 0);
GPIO_SetupPinOptions(130, GPIO_OUTPUT, GPIO_PUSHPULL);
GpioDataRegs.GPECLEAR.bit.GPIO130 = 1;
// LED7
GPIO_SetupPinMux(131, GPIO_MUX_CPU1, 0);
GPIO_SetupPinOptions(131, GPIO_OUTPUT, GPIO_PUSHPULL);
GpioDataRegs.GPECLEAR.bit.GPIO131 = 1;
// LED8
GPIO_SetupPinMux(25, GPIO_MUX_CPU1, 0);
GPIO_SetupPinOptions(25, GPIO_OUTPUT, GPIO_PUSHPULL);
GpioDataRegs.GPACLEAR.bit.GPIO25 = 1;
// LED9
GPIO_SetupPinMux(26, GPIO_MUX_CPU1, 0);
GPIO_SetupPinOptions(26, GPIO_OUTPUT, GPIO_PUSHPULL);
GpioDataRegs.GPACLEAR.bit.GPIO26 = 1;
// LED10
GPIO_SetupPinMux(27, GPIO_MUX_CPU1, 0);
GPIO_SetupPinOptions(27, GPIO_OUTPUT, GPIO_PUSHPULL);
GpioDataRegs.GPACLEAR.bit.GPIO27 = 1;
// LED11
GPIO_SetupPinMux(60, GPIO_MUX_CPU1, 0);
GPIO_SetupPinOptions(60, GPIO_OUTPUT, GPIO_PUSHPULL);
GpioDataRegs.GPBCLEAR.bit.GPIO60 = 1;
// LED12
GPIO_SetupPinMux(61, GPIO_MUX_CPU1, 0);
GPIO_SetupPinOptions(61, GPIO_OUTPUT, GPIO_PUSHPULL);
GpioDataRegs.GPBCLEAR.bit.GPIO61 = 1;
// LED13
GPIO_SetupPinMux(157, GPIO_MUX_CPU1, 0);
GPIO_SetupPinOptions(157, GPIO_OUTPUT, GPIO_PUSHPULL);
GpioDataRegs.GPECLEAR.bit.GPIO157 = 1;
// LED14
GPIO_SetupPinMux(158, GPIO_MUX_CPU1, 0);
GPIO_SetupPinOptions(158, GPIO_OUTPUT, GPIO_PUSHPULL);
GpioDataRegs.GPECLEAR.bit.GPIO158 = 1;
// LED15
GPIO_SetupPinMux(159, GPIO_MUX_CPU1, 0);
GPIO_SetupPinOptions(159, GPIO_OUTPUT, GPIO_PUSHPULL);
GpioDataRegs.GPECLEAR.bit.GPIO159 = 1;
// LED16
GPIO_SetupPinMux(160, GPIO_MUX_CPU1, 0);
GPIO_SetupPinOptions(160, GPIO_OUTPUT, GPIO_PUSHPULL);
GpioDataRegs.GPFCLEAR.bit.GPIO160 = 1;
//DRV8874 #1 DIR Direction
GPIO_SetupPinMux(29, GPIO_MUX_CPU1, 0);
GPIO_SetupPinOptions(29, GPIO_OUTPUT, GPIO_PUSHPULL);
GpioDataRegs.GPASET.bit.GPIO29 = 1;
//DRV8874 #2 DIR Direction
GPIO_SetupPinMux(32, GPIO_MUX_CPU1, 0);
GPIO_SetupPinOptions(32, GPIO_OUTPUT, GPIO_PUSHPULL);
GpioDataRegs.GPBSET.bit.GPIO32 = 1;
//MPU9250 CS Chip Select
GPIO_SetupPinMux(66, GPIO_MUX_CPU1, 0);
GPIO_SetupPinOptions(66, GPIO_OUTPUT, GPIO_PUSHPULL);
GpioDataRegs.GPCSET.bit.GPIO66 = 1;
//WIZNET CS Chip Select
GPIO_SetupPinMux(125, GPIO_MUX_CPU1, 0);
GPIO_SetupPinOptions(125, GPIO_OUTPUT, GPIO_PUSHPULL);
GpioDataRegs.GPDSET.bit.GPIO125 = 1;
//SPIRAM CS Chip Select
GPIO_SetupPinMux(19, GPIO_MUX_CPU1, 0);
GPIO_SetupPinOptions(19, GPIO_OUTPUT, GPIO_PUSHPULL);
GpioDataRegs.GPASET.bit.GPIO19 = 1;
//PushButton 1
GPIO_SetupPinMux(4, GPIO_MUX_CPU1, 0);
GPIO_SetupPinOptions(4, GPIO_INPUT, GPIO_PULLUP);
//PushButton 2
GPIO_SetupPinMux(5, GPIO_MUX_CPU1, 0);
GPIO_SetupPinOptions(5, GPIO_INPUT, GPIO_PULLUP);
//PushButton 3
GPIO_SetupPinMux(6, GPIO_MUX_CPU1, 0);
GPIO_SetupPinOptions(6, GPIO_INPUT, GPIO_PULLUP);
//PushButton 4
GPIO_SetupPinMux(7, GPIO_MUX_CPU1, 0);
GPIO_SetupPinOptions(7, GPIO_INPUT, GPIO_PULLUP);
//Joy Stick Pushbutton
GPIO_SetupPinMux(8, GPIO_MUX_CPU1, 0);
GPIO_SetupPinOptions(8, GPIO_INPUT, GPIO_PULLUP);
// Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the F2837xD_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in F2837xD_DefaultIsr.c.
// This function is found in F2837xD_PieVect.c.
InitPieVectTable();
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this project
EALLOW; // This is needed to write to EALLOW protected registers
PieVectTable.TIMER0_INT = &cpu_timer0_isr;
PieVectTable.TIMER1_INT = &cpu_timer1_isr;
PieVectTable.TIMER2_INT = &cpu_timer2_isr;
PieVectTable.SPIB_RX_INT = &SPIB_isr; // Lab 7 ex 1 (Lab 6)
PieVectTable.ADCB1_INT = &ADCB_isr;
PieVectTable.ADCA1_INT = &ADCA_isr;// Lab 7 ex 1 (Lab 4)
PieVectTable.SCIA_RX_INT = &RXAINT_recv_ready;
PieVectTable.SCIC_RX_INT = &RXCINT_recv_ready;
PieVectTable.SCID_RX_INT = &RXDINT_recv_ready;
PieVectTable.SCIA_TX_INT = &TXAINT_data_sent;
PieVectTable.SCIC_TX_INT = &TXCINT_data_sent;
PieVectTable.SCID_TX_INT = &TXDINT_data_sent;
PieVectTable.EMIF_ERROR_INT = &SWI_isr;
EDIS; // This is needed to disable write to EALLOW protected registers
// Initialize the CpuTimers Device Peripheral. This function can be
// found in F2837xD_CpuTimers.c
InitCpuTimers();
// Configure CPU-Timer 0, 1, and 2 to interrupt every second:
// 200MHz CPU Freq, 1 second Period (in uSeconds)
ConfigCpuTimer(&CpuTimer0, 200, 1000000);
ConfigCpuTimer(&CpuTimer1, 200, 20000);
ConfigCpuTimer(&CpuTimer2, 200, 10000);
// Enable CpuTimer Interrupt bit TIE
CpuTimer0Regs.TCR.all = 0x4000;
CpuTimer1Regs.TCR.all = 0x4000;
CpuTimer2Regs.TCR.all = 0x4000;
init_serial(&SerialA,115200,serialRXA);
// init_serial(&SerialC,115200,serialRXC);
// init_serial(&SerialD,115200,serialRXD);
setupSpib();
// Lab 7 ex 1 (Lab 4 for the joystick)
EALLOW;
EPwm5Regs.ETSEL.bit.SOCAEN = 0; // Disable SOC on A group
EPwm5Regs.TBCTL.bit.CTRMODE = 3; // freeze counter
EPwm5Regs.ETSEL.bit.SOCASEL = 2; // Select Event when counter equal to PRD
EPwm5Regs.ETPS.bit.SOCAPRD = 1; // Generate pulse on 1st event (“pulse” is the same as “trigger”)
EPwm5Regs.TBCTR = 0x0; // Clear counter
EPwm5Regs.TBPHS.bit.TBPHS = 0x0000; // Phase is 0
EPwm5Regs.TBCTL.bit.PHSEN = 0; // Disable phase loading
EPwm5Regs.TBCTL.bit.CLKDIV = 0; // divide by 1 50Mhz Clock
//EPwm5Regs.TBPRD = 12500; // Set Period to .25ms sample. Input clock is 50MHz.
EPwm5Regs.TBPRD = 50000; // Set Period to .10ms sample. Input clock is 50MHz.
// Notice here that we are not setting CMPA or CMPB because we are not using the PWM signal
EPwm5Regs.ETSEL.bit.SOCAEN = 1; //enable SOCA
EPwm5Regs.TBCTL.bit.CTRMODE = 0; //unfreeze, and enter up count mode
EDIS;
//2nd step from Ex1
EALLOW;
//write configurations for all ADCs ADCA, ADCB, ADCC, ADCD
AdcaRegs.ADCCTL2.bit.PRESCALE = 6; //set ADCCLK divider to /4
AdcSetMode(ADC_ADCA, ADC_RESOLUTION_12BIT, ADC_SIGNALMODE_SINGLE); //read calibration settings
//Set pulse positions to late
AdcaRegs.ADCCTL1.bit.INTPULSEPOS = 1;
//power up the ADCs
AdcaRegs.ADCCTL1.bit.ADCPWDNZ = 1;
//delay for 1ms to allow ADC time to power up
DELAY_US(1000);
//Select the channels to convert and end of conversion flag
//Many statements commented out, To be used when using ADCA or ADCB
//ADCA
AdcaRegs.ADCSOC0CTL.bit.CHSEL = 2; //SOC0 will convert Channel you choose Does not have to be A0
AdcaRegs.ADCSOC0CTL.bit.ACQPS = 99; //sample window is acqps + 1 SYSCLK cycles = 500ns
AdcaRegs.ADCSOC0CTL.bit.TRIGSEL = 13;// EPWM5 ADCSOCA or another trigger you choose will trigger SOC0
AdcaRegs.ADCSOC1CTL.bit.CHSEL = 3; //SOC1 will convert Channel you choose Does not have to be A1
AdcaRegs.ADCSOC1CTL.bit.ACQPS = 99; //sample window is acqps + 1 SYSCLK cycles = 500ns
AdcaRegs.ADCSOC1CTL.bit.TRIGSEL = 13;// EPWM5 ADCSOCA or another trigger you choose will trigger SOC1
AdcaRegs.ADCINTSEL1N2.bit.INT1SEL = 1; //set to last SOC that is converted and it will set INT1 flag ADCA1
AdcaRegs.ADCINTSEL1N2.bit.INT1E = 1; //enable INT1 flag
AdcaRegs.ADCINTFLGCLR.bit.ADCINT1 = 1; //make sure INT1 flag is cleared
//3rd step from Ex1
// Enable DACA and DACB outputs
EALLOW;
DacaRegs.DACOUTEN.bit.DACOUTEN = 1;//enable dacA output-->uses ADCINA0
DacaRegs.DACCTL.bit.LOADMODE = 0;//load on next sysclk
DacaRegs.DACCTL.bit.DACREFSEL = 1;//use ADC VREF as reference voltage
DacbRegs.DACOUTEN.bit.DACOUTEN = 1;//enable dacB output-->uses ADCINA1
DacbRegs.DACCTL.bit.LOADMODE = 0;//load on next sysclk
DacbRegs.DACCTL.bit.DACREFSEL = 1;//use ADC VREF as reference voltage
EDIS;
// Use this code from lab 4 and change the EPwm5Regs to EPWm4Regs, This code was give by el Profe.
// This Regs will be asign to ADCB and will be at 10 kH.
EALLOW;
EPwm4Regs.ETSEL.bit.SOCAEN = 0; // Disable SOC on A group
EPwm4Regs.TBCTL.bit.CTRMODE = 3; // freeze counter
EPwm4Regs.ETSEL.bit.SOCASEL = 2; // Select Event when counter equal to PRD
EPwm4Regs.ETPS.bit.SOCAPRD = 1; // Generate pulse on 1st event (“pulse” is the same as “trigger”)
EPwm4Regs.TBCTR = 0x0; // Clear counter
EPwm4Regs.TBPHS.bit.TBPHS = 0x0000; // Phase is 0
EPwm4Regs.TBCTL.bit.PHSEN = 0; // Disable phase loading
EPwm4Regs.TBCTL.bit.CLKDIV = 0; // divide by 1 50Mhz Clock
//EPwm4Regs.TBPRD = 12500; // Set Period to .25ms sample. Input clock is 50MHz.
EPwm4Regs.TBPRD = 5000; // Set Period to .10ms sample. Input clock is 50MHz.
// Notice here that we are not setting CMPA or CMPB because we are not using the PWM signal
EPwm4Regs.ETSEL.bit.SOCAEN = 1; //enable SOCA
EPwm4Regs.TBCTL.bit.CTRMODE = 0; //unfreeze, and enter up count mode
EDIS;
//2nd step from Ex1
EALLOW;
//write configurations for all ADCs ADCA, ADCB, ADCC, ADCD
AdcaRegs.ADCCTL2.bit.PRESCALE = 6; //set ADCCLK divider to /4
AdcbRegs.ADCCTL2.bit.PRESCALE = 6; //set ADCCLK divider to /4
AdccRegs.ADCCTL2.bit.PRESCALE = 6; //set ADCCLK divider to /4
AdcdRegs.ADCCTL2.bit.PRESCALE = 6; //set ADCCLK divider to /4
AdcSetMode(ADC_ADCA, ADC_RESOLUTION_12BIT, ADC_SIGNALMODE_SINGLE); //read calibration settings
AdcSetMode(ADC_ADCB, ADC_RESOLUTION_12BIT, ADC_SIGNALMODE_SINGLE); //read calibration settings
AdcSetMode(ADC_ADCC, ADC_RESOLUTION_12BIT, ADC_SIGNALMODE_SINGLE); //read calibration settings
AdcSetMode(ADC_ADCD, ADC_RESOLUTION_12BIT, ADC_SIGNALMODE_SINGLE); //read calibration settings
//Set pulse positions to late
AdcaRegs.ADCCTL1.bit.INTPULSEPOS = 1;
AdcbRegs.ADCCTL1.bit.INTPULSEPOS = 1;
AdccRegs.ADCCTL1.bit.INTPULSEPOS = 1;
AdcdRegs.ADCCTL1.bit.INTPULSEPOS = 1;
//power up the ADCs
AdcaRegs.ADCCTL1.bit.ADCPWDNZ = 1;
AdcbRegs.ADCCTL1.bit.ADCPWDNZ = 1;
AdccRegs.ADCCTL1.bit.ADCPWDNZ = 1;
AdcdRegs.ADCCTL1.bit.ADCPWDNZ = 1;
//delay for 1ms to allow ADC time to power up
DELAY_US(1000);
//ADCB code from lab 4
AdcbRegs.ADCSOC0CTL.bit.CHSEL = 4; //SOC0 will convert Channel you choose Does not have to be B0
AdcbRegs.ADCSOC0CTL.bit.ACQPS = 99; //sample window is acqps + 1 SYSCLK cycles = 500ns
AdcbRegs.ADCSOC0CTL.bit.TRIGSEL = 11;// EPWM4 ADCSOCA or another trigger you choose will trigger SOC0
// AdcbRegs.ADCSOC1CTL.bit.CHSEL = 1; //SOC1 will convert Channel you choose Does not have to be B1
// AdcbRegs.ADCSOC1CTL.bit.ACQPS = 99; //sample window is acqps + 1 SYSCLK cycles = 500ns
// AdcbRegs.ADCSOC1CTL.bit.TRIGSEL = 11;// EPWM4 ADCSOCA or another trigger you choose will trigger SOC1
// AdcbRegs.ADCSOC2CTL.bit.CHSEL = 2; //SOC2 will convert Channel you choose Does not have to be B2
// AdcbRegs.ADCSOC2CTL.bit.ACQPS = 99; //sample window is acqps + 1 SYSCLK cycles = 500ns
// AdcbRegs.ADCSOC2CTL.bit.TRIGSEL = 12;// EPWM4 ADCSOCA or another trigger you choose will trigger SOC2
// AdcbRegs.ADCSOC3CTL.bit.CHSEL = 3; //SOC3 will convert Channel you choose Does not have to be B3
// AdcbRegs.ADCSOC3CTL.bit.ACQPS = 99; //sample window is acqps + 1 SYSCLK cycles = 500ns
// AdcbRegs.ADCSOC3CTL.bit.TRIGSEL = 12;// EPWM4 ADCSOCA or another trigger you choose will trigger SOC3
AdcbRegs.ADCINTSEL1N2.bit.INT1SEL = 0 ; //set to last SOC that is converted and it will set INT1 flag ADCB1
AdcbRegs.ADCINTSEL1N2.bit.INT1E = 1; //enable INT1 flag
AdcbRegs.ADCINTFLGCLR.bit.ADCINT1 = 1; //make sure INT1 flag is cleared
//3rd step from Ex1
// Enable DACA and DACB outputs
EALLOW;
DacaRegs.DACOUTEN.bit.DACOUTEN = 1;//enable dacA output-->uses ADCINA0
DacaRegs.DACCTL.bit.LOADMODE = 0;//load on next sysclk
DacaRegs.DACCTL.bit.DACREFSEL = 1;//use ADC VREF as referene voltage
DacbRegs.DACOUTEN.bit.DACOUTEN = 1;//enable dacB output-->uses ADCINA1
DacbRegs.DACCTL.bit.LOADMODE = 0;//load on next sysclk
DacbRegs.DACCTL.bit.DACREFSEL = 1;//use ADC VREF as reference voltage
EDIS;
//Lab 7 ex 1 (Lab 6 for motors)
//this is coding the motors
// A is the right motor, and B is the left motor
EPwm2Regs.TBCTL.bit.CTRMODE = 0; // inituilzation go here towards the end of main function
EPwm2Regs.TBCTL.bit.FREE_SOFT= 2;
EPwm2Regs.TBCTL.bit.PHSEN = 0;
EPwm2Regs.TBCTL.bit.CLKDIV = 0;
EPwm2Regs.TBCTR = 0;
EPwm2Regs.TBPRD = 2500;
EPwm2Regs.CMPA.bit.CMPA = 0;
EPwm2Regs.AQCTLA.bit.CAU = 1;
EPwm2Regs.AQCTLA.bit.ZRO = 2;
EPwm2Regs.CMPB.bit.CMPB = 0;
EPwm2Regs.AQCTLB.bit.CBU = 1;
EPwm2Regs.AQCTLB.bit.ZRO = 2;
EPwm2Regs.TBPHS.bit.TBPHS = 0;
// right motor
GPIO_SetupPinMux(2, GPIO_MUX_CPU1, 1);
// GPIO_SetupPinOptions(22, GPIO_OUTPUT, GPIO_PUSHPULL);
// GpioDataRegs.GPACLEAR.bit.GPIO22 = 1
// left motor
GPIO_SetupPinMux(3, GPIO_MUX_CPU1, 1);
// GPIO_SetupPinOptions(22, GPIO_OUTPUT, GPIO_PUSHPULL);
// GpioDataRegs.GPACLEAR.bit.GPIO22 = 1
// RC Servo Motor 1 PWM
GPIO_SetupPinMux(14, GPIO_MUX_CPU1, 1);
// RC Servo Motor 2 PWM
GPIO_SetupPinMux(15, GPIO_MUX_CPU1, 1);
EALLOW; // Below are protected registers
GpioCtrlRegs.GPAPUD.bit.GPIO2 = 1; // For EPWM2A
GpioCtrlRegs.GPAPUD.bit.GPIO3 = 1; // For EPWM2B
EDIS;
init_eQEPs();
//end of Lab 7 ex 1 (Lab 6 for motors)
// Enable CPU int1 which is connected to CPU-Timer 0, CPU int13
// which is connected to CPU-Timer 1, and CPU int 14, which is connected
// to CPU-Timer 2: int 12 is for the SWI.
IER |= M_INT1;
IER |= M_INT8; // SCIC SCID
IER |= M_INT9; // SCIA
IER |= M_INT12;
IER |= M_INT13;
IER |= M_INT14;
IER |= M_INT6;// from lab 5
// Enable TINT0 in the PIE: Group 1 interrupt 7
PieCtrlRegs.PIEIER1.bit.INTx7 = 1;
// Enable SWI in the PIE: Group 12 interrupt 9
PieCtrlRegs.PIEIER12.bit.INTx9 = 1;
// Enable TINT0 in the PIE: Group 1 interrupt 2
PieCtrlRegs.PIEIER1.bit.INTx2 = 1;//ADCB1 - Lab 4
// Enable SWI in the PIE: Group 6 interrupt 3
PieCtrlRegs.PIEIER6.bit.INTx3 = 1;
// Enable TINT0 in the PIE: Group 1 interrupt 1
PieCtrlRegs.PIEIER1.bit.INTx1 = 1;//ADCA1 - Lab 4
int16_t i = 0;
float samplePeriod = 0.0002;
// Clear input buffers:
for(i=0; i < RFFT_SIZE; i++){
ping_input[i] = 0.0;
}
for (i=0;i<RFFT_SIZE;i++) {
ping_input[i] = sin(125*2*PI*i*samplePeriod)+2*sin(2400*2*PI*i*samplePeriod);
}
hnd_rfft->FFTSize = RFFT_SIZE;
hnd_rfft->FFTStages = RFFT_STAGES;
hnd_rfft->InBuf = &ping_input[0]; //Input buffer
hnd_rfft->OutBuf = &test_output[0]; //Output buffer
hnd_rfft->MagBuf = &pwrSpec[0]; //Magnitude buffer
hnd_rfft->CosSinBuf = &RFFTF32Coef[0]; //Twiddle factor buffer
RFFT_f32_sincostable(hnd_rfft); //Calculate twiddle factor
for (i=0; i < RFFT_SIZE; i++){
test_output[i] = 0; //Clean up output buffer
}
for (i=0; i <= RFFT_SIZE/2; i++){
pwrSpec[i] = 0; //Clean up magnitude buffer
}
// run fft 10 times just to under what the FFT does
// int16_t tries = 0;
// while(tries < 10) {
// hnd_rfft->InBuf = &ping_input[0]; //Input buffer
// RFFT_f32(hnd_rfft); //Calculate real FFT
//
//#ifdef __TMS320C28XX_TMU__ //defined when --tmu_support=tmu0 in the project
// // properties
// RFFT_f32_mag_TMU0(hnd_rfft); //Calculate magnitude
//#else
// RFFT_f32_mag(hnd_rfft); //Calculate magnitude
//#endif
// maxpwr = 0;
// maxpwrindex = 0;
//
// for (i=0;i<(RFFT_SIZE/2);i++) {
// if (pwrSpec[i]>maxpwr) {
// maxpwr = pwrSpec[i];
// maxpwrindex = i;
// }
// }
//
// tries++;
// for (i=0;i<RFFT_SIZE;i++) {
// ping_input[i] = sin((125 + tries*125)*2*PI*i*samplePeriod)+2*sin((2400-tries*200)*2*PI*i*samplePeriod);
// }
// }
// Enable global Interrupts and higher priority real-time debug events
EINT; // Enable Global interrupt INTM
ERTM; // Enable Global realtime interrupt DBGM
for(i=0; i<512;i++){
...
This file has been truncated, please download it to see its full contents.
Comments
Please log in or sign up to comment.