Kevin Richmond
Published © GPL3+

Listen Up: Machine Learning applied to fan noises

Perform AI-powered fan operation diagnoses and predictive maintenance from sound measurements and Machine Learning models

IntermediateWork in progress2 hours415
Listen Up: Machine Learning applied to fan noises

Things used in this project

Story

Read more

Code

portenta_h7_microphone_continuous

Arduino
/* Edge Impulse ingestion SDK
 * Copyright (c) 2022 EdgeImpulse Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 */

// If your target is limited in memory remove this macro to save 10K RAM
#define EIDSP_QUANTIZE_FILTERBANK   0

/*
 ** NOTE: If you run into TFLite arena allocation issue.
 **
 ** This may be due to may dynamic memory fragmentation.
 ** Try defining "-DEI_CLASSIFIER_ALLOCATION_STATIC" in boards.local.txt (create
 ** if it doesn't exist) and copy this file to
 ** `<ARDUINO_CORE_INSTALL_PATH>/arduino/hardware/<mbed_core>/<core_version>/`.
 **
 ** See
 ** (https://support.arduino.cc/hc/en-us/articles/360012076960-Where-are-the-installed-cores-located-)
 ** to find where Arduino installs cores on your machine.
 **
 ** If the problem persists then there's not enough memory for this model and application.
 */

/* Includes ---------------------------------------------------------------- */
#include <PDM.h>
#include <Fan_operation_condition_inferencing.h>

/** Audio buffers, pointers and selectors */
typedef struct {
    signed short *buffers[2];
    unsigned char buf_select;
    unsigned char buf_ready;
    unsigned int buf_count;
    unsigned int n_samples;
} inference_t;

static inference_t inference;
static volatile bool record_ready = false;
// static signed short *sampleBuffer;
static signed short sampleBuffer[2048];
static bool debug_nn = false; // Set this to true to see e.g. features generated from the raw signal
static int print_results = -(EI_CLASSIFIER_SLICES_PER_MODEL_WINDOW);

/**
 * @brief      Arduino setup function
 */
void setup()
{
    // put your setup code here, to run once:
    Serial.begin(115200);
    // comment out the below line to cancel the wait for USB connection (needed for native USB)
    while (!Serial);
    Serial.println("Edge Impulse Inferencing Demo");

    // summary of inferencing settings (from model_metadata.h)
    ei_printf("Inferencing settings:\n");
    ei_printf("\tInterval: ");
    ei_printf_float((float)EI_CLASSIFIER_INTERVAL_MS);
    ei_printf(" ms.\n");
    ei_printf("\tFrame size: %d\n", EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE);
    ei_printf("\tSample length: %d ms.\n", EI_CLASSIFIER_RAW_SAMPLE_COUNT / 16);
    ei_printf("\tNo. of classes: %d\n", sizeof(ei_classifier_inferencing_categories) /
                                            sizeof(ei_classifier_inferencing_categories[0]));

    run_classifier_init();
    if (microphone_inference_start(EI_CLASSIFIER_SLICE_SIZE) == false) {
        ei_printf("ERR: Could not allocate audio buffer (size %d), this could be due to the window length of your model\r\n", EI_CLASSIFIER_RAW_SAMPLE_COUNT);
        return;
    }
}

/**
 * @brief      Arduino main function. Runs the inferencing loop.
 */
void loop()
{
    bool m = microphone_inference_record();
    if (!m) {
        ei_printf("ERR: Failed to record audio...\n");
        return;
    }

    signal_t signal;
    signal.total_length = EI_CLASSIFIER_SLICE_SIZE;
    signal.get_data = &microphone_audio_signal_get_data;
    ei_impulse_result_t result = {0};

    EI_IMPULSE_ERROR r = run_classifier_continuous(&signal, &result, debug_nn);
    if (r != EI_IMPULSE_OK) {
        ei_printf("ERR: Failed to run classifier (%d)\n", r);
        return;
    }

    if (++print_results >= (EI_CLASSIFIER_SLICES_PER_MODEL_WINDOW)) {
        // print the predictions
        ei_printf("Predictions ");
        ei_printf("(DSP: %d ms., Classification: %d ms., Anomaly: %d ms.)",
            result.timing.dsp, result.timing.classification, result.timing.anomaly);
        ei_printf(": \n");
        for (size_t ix = 0; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) {
            ei_printf("    %s: ", result.classification[ix].label);
            ei_printf_float(result.classification[ix].value);
            ei_printf("\n");

        }
#if EI_CLASSIFIER_HAS_ANOMALY == 1
        ei_printf("    anomaly score: ");
        ei_printf_float(result.anomaly);
        ei_printf("\n");
#endif

        print_results = 0;
    }
}

/**
 * @brief      PDM buffer full callback
 *             Copy audio data to app buffers
 */
static void pdm_data_ready_inference_callback(void)
{
    int bytesAvailable = PDM.available();

    // read into the sample buffer
    int bytesRead = PDM.read((char *)&sampleBuffer[0], bytesAvailable);

    if ((inference.buf_ready == 0) && (record_ready == true)) {
        for(int i = 0; i < bytesRead>>1; i++) {
            inference.buffers[inference.buf_select][inference.buf_count++] = sampleBuffer[i];

            if (inference.buf_count >= inference.n_samples) {
                inference.buf_select ^= 1;
                inference.buf_count = 0;
                inference.buf_ready = 1;
                break;
            }
        }
    }
}

/**
 * @brief      Init inferencing struct and setup/start PDM
 *
 * @param[in]  n_samples  The n samples
 *
 * @return     { description_of_the_return_value }
 */
static bool microphone_inference_start(uint32_t n_samples)
{
    inference.buffers[0] = (signed short *)malloc(n_samples * sizeof(signed short));

    if (inference.buffers[0] == NULL) {
        return false;
    }

    inference.buffers[1] = (signed short *)malloc(n_samples * sizeof(signed short));

    if (inference.buffers[1] == NULL) {
        ei_free(inference.buffers[0]);
        return false;
    }

    // sampleBuffer = (signed short *)malloc((n_samples >> 1) * sizeof(signed short));

    // if (sampleBuffer == NULL) {
    //     ei_free(inference.buffers[0]);
    //     ei_free(inference.buffers[1]);
    //     return false;
    // }

    inference.buf_select = 0;
    inference.buf_count = 0;
    inference.n_samples = n_samples;
    inference.buf_ready = 0;

    // configure the data receive callback
    PDM.onReceive(&pdm_data_ready_inference_callback);

    // optionally set the gain, defaults to 24
    // Note: values >=52 not supported
    //PDM.setGain(40);

    PDM.setBufferSize(2048);

    // initialize PDM with:
    // - one channel (mono mode)
    if (!PDM.begin(1, EI_CLASSIFIER_FREQUENCY)) {
        ei_printf("ERR: Failed to start PDM!");
        return false;
    }

    record_ready = true;

    return true;
}

/**
 * @brief      Wait on new data
 *
 * @return     True when finished
 */
static bool microphone_inference_record(void)
{
    bool ret = true;

    if (inference.buf_ready == 1) {
        ei_printf(
            "Error sample buffer overrun. Decrease the number of slices per model window "
            "(EI_CLASSIFIER_SLICES_PER_MODEL_WINDOW)\n");
        ret = false;
    }

    while (inference.buf_ready == 0) {
        delay(1);
    }

    inference.buf_ready = 0;

    return ret;
}

/**
 * Get raw audio signal data
 */
static int microphone_audio_signal_get_data(size_t offset, size_t length, float *out_ptr)
{
    numpy::int16_to_float(&inference.buffers[inference.buf_select ^ 1][offset], out_ptr, length);

    return 0;
}

/**
 * @brief      Stop PDM and release buffers
 */
static void microphone_inference_end(void)
{
    PDM.end();
    ei_free(inference.buffers[0]);
    ei_free(inference.buffers[1]);
    // ei_free(sampleBuffer);
    record_ready = false;
}

#if !defined(EI_CLASSIFIER_SENSOR) || EI_CLASSIFIER_SENSOR != EI_CLASSIFIER_SENSOR_MICROPHONE
#error "Invalid model for current sensor."
#endif

portenta_h7_microphone_continuous_listen_up

Arduino
#define EIDSP_QUANTIZE_FILTERBANK   0

#include <PDM.h>
#include <Fan_operation_condition_inferencing.h>

typedef struct {
    signed short *buffers[2];
    unsigned char buf_select;
    unsigned char buf_ready;
    unsigned int buf_count;
    unsigned int n_samples;
} inference_t;

static inference_t inference;
static volatile bool record_ready = false;
static signed short sampleBuffer[2048];
static bool debug_nn = false; // Set this to true to see e.g. features generated from the raw signal
static int print_results = -(EI_CLASSIFIER_SLICES_PER_MODEL_WINDOW);
float threshold = 0.8;

void setup()
{
    
    Serial.begin(115200);
    
    pinMode(LEDR, OUTPUT);
    pinMode(LEDG, OUTPUT);
    pinMode(LEDB, OUTPUT);
    
    while (!Serial);
    Serial.println("Edge Impulse Inferencing Demo");

    ei_printf("Inferencing settings:\n");
    ei_printf("\tInterval: ");
    ei_printf_float((float)EI_CLASSIFIER_INTERVAL_MS);
    ei_printf(" ms.\n");
    ei_printf("\tFrame size: %d\n", EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE);
    ei_printf("\tSample length: %d ms.\n", EI_CLASSIFIER_RAW_SAMPLE_COUNT / 16);
    ei_printf("\tNo. of classes: %d\n", sizeof(ei_classifier_inferencing_categories) /
                                            sizeof(ei_classifier_inferencing_categories[0]));

    run_classifier_init();
    if (microphone_inference_start(EI_CLASSIFIER_SLICE_SIZE) == false) {
        ei_printf("ERR: Could not allocate audio buffer (size %d), this could be due to the window length of your model\r\n", EI_CLASSIFIER_RAW_SAMPLE_COUNT);
        return;
    }
    
}

void loop()
{
    bool m = microphone_inference_record();
    if (!m) {
        ei_printf("ERR: Failed to record audio...\n");
        return;
    }

    signal_t signal;
    signal.total_length = EI_CLASSIFIER_SLICE_SIZE;
    signal.get_data = &microphone_audio_signal_get_data;
    ei_impulse_result_t result = {0};

    EI_IMPULSE_ERROR r = run_classifier_continuous(&signal, &result, debug_nn);
    if (r != EI_IMPULSE_OK) {
        ei_printf("ERR: Failed to run classifier (%d)\n", r);
        return;
    }

    if (++print_results >= (EI_CLASSIFIER_SLICES_PER_MODEL_WINDOW)) {
        // print the predictions
        ei_printf("Predictions ");
        ei_printf("(DSP: %d ms., Classification: %d ms., Anomaly: %d ms.)",
            result.timing.dsp, result.timing.classification, result.timing.anomaly);
        ei_printf(": \n");
        for (size_t ix = 0; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) 
        {   
            //0: background, 1: normal, 2: severe, 3: soft
            ei_printf("    %s: ", result.classification[ix].label);
            ei_printf_float(result.classification[ix].value);
            ei_printf("\n");
        }
        
        if (result.classification[0].value > threshold)
            { 
              //LEDs turned off if background
              digitalWrite(LEDR, HIGH);
              digitalWrite(LEDG, HIGH);
              digitalWrite(LEDB, HIGH);
            }
        
        else if (result.classification[1].value > threshold)
            { 
              //Green LED turned on if normal
              digitalWrite(LEDR, HIGH);
              digitalWrite(LEDG, LOW);
              digitalWrite(LEDB, HIGH);
            }
        
        else if (result.classification[2].value > threshold)
            { 
              //Red LED turned on if severe
              digitalWrite(LEDR, LOW);
              digitalWrite(LEDG, HIGH);
              digitalWrite(LEDB, HIGH);
            }
        
        else if (result.classification[3].value > threshold)
            { 
              //Orange(Red + Green) LED turned on if soft 
              digitalWrite(LEDR, LOW);
              digitalWrite(LEDG, LOW);
              digitalWrite(LEDB, HIGH);
            }
        
        else
            { 
              //Blue LED turned on if model cannot predict with high confidence
              digitalWrite(LEDR, HIGH);
              digitalWrite(LEDG, HIGH);
              digitalWrite(LEDB, LOW);
            }
        
        
#if EI_CLASSIFIER_HAS_ANOMALY == 1
        ei_printf("    anomaly score: ");
        ei_printf_float(result.anomaly);
        ei_printf("\n");
#endif

        print_results = 0;
    }
}

static void pdm_data_ready_inference_callback(void)
{
    int bytesAvailable = PDM.available();

    int bytesRead = PDM.read((char *)&sampleBuffer[0], bytesAvailable);

    if ((inference.buf_ready == 0) && (record_ready == true)) {
        for(int i = 0; i < bytesRead>>1; i++) {
            inference.buffers[inference.buf_select][inference.buf_count++] = sampleBuffer[i];

            if (inference.buf_count >= inference.n_samples) {
                inference.buf_select ^= 1;
                inference.buf_count = 0;
                inference.buf_ready = 1;
                break;
            }
        }
    }
}

static bool microphone_inference_start(uint32_t n_samples)
{
    inference.buffers[0] = (signed short *)malloc(n_samples * sizeof(signed short));

    if (inference.buffers[0] == NULL) {
        return false;
    }

    inference.buffers[1] = (signed short *)malloc(n_samples * sizeof(signed short));

    if (inference.buffers[1] == NULL) {
        ei_free(inference.buffers[0]);
        return false;
    }

    inference.buf_select = 0;
    inference.buf_count = 0;
    inference.n_samples = n_samples;
    inference.buf_ready = 0;

    PDM.onReceive(&pdm_data_ready_inference_callback);

    PDM.setBufferSize(2048);

    if (!PDM.begin(1, EI_CLASSIFIER_FREQUENCY)) {
        ei_printf("ERR: Failed to start PDM!");
        return false;
    }

    record_ready = true;

    return true;
}

static bool microphone_inference_record(void)
{
    bool ret = true;

    if (inference.buf_ready == 1) {
        ei_printf(
            "Error sample buffer overrun. Decrease the number of slices per model window "
            "(EI_CLASSIFIER_SLICES_PER_MODEL_WINDOW)\n");
        ret = false;
    }

    while (inference.buf_ready == 0) {
        delay(1);
    }

    inference.buf_ready = 0;

    return ret;
}

static int microphone_audio_signal_get_data(size_t offset, size_t length, float *out_ptr)
{
    numpy::int16_to_float(&inference.buffers[inference.buf_select ^ 1][offset], out_ptr, length);

    return 0;
}

static void microphone_inference_end(void)
{
    PDM.end();
    ei_free(inference.buffers[0]);
    ei_free(inference.buffers[1]);
    
    record_ready = false;
}

#if !defined(EI_CLASSIFIER_SENSOR) || EI_CLASSIFIER_SENSOR != EI_CLASSIFIER_SENSOR_MICROPHONE
#error "Invalid model for current sensor."
#endif

Credits

Kevin Richmond

Kevin Richmond

7 projects • 2 followers
Engineer passionate about automation, IoT, Machine Learning and sustainability.

Comments