Samuel Alexander
Published © GPL3+

Smart Cashier with Edge Impulse FOMO

Self checkout smart cashier using object detection to calculate number of items and total price for your purchase.

IntermediateFull instructions provided6 hours5,457
Smart Cashier with Edge Impulse FOMO

Things used in this project

Hardware components

Raspberry Pi 4 Model B
Raspberry Pi 4 Model B
×1
RGB Backlight LCD - 16x2
Adafruit RGB Backlight LCD - 16x2
×1
USB webcam (generic)
×1

Software apps and online services

Edge Impulse Studio
Edge Impulse Studio
Raspberry Pi OS

Hand tools and fabrication machines

3D Printer (generic)
3D Printer (generic)

Story

Read more

Custom parts and enclosures

LCD holder for Raspberry Pi

This mounting bracket will allow attaching the LCD to the Raspberry Pi at a comfortable viewing angle.

Schematics

I2C LCD connection

Code

smartcashierFOMO_lcd16x2.py

Python
This program is based on the eim file which is modified to output the number of items and total price to a LCD 16x2. Deploy this to the Raspberry Pi.
#!/usr/bin/env python

#import device_patches       # Device specific patches for Jetson Nano (needs to be before importing cv2)

import cv2
import os
import sys, getopt
import signal
import time
import drivers      # Driver for LCD 16 x 2
from edge_impulse_linux.image import ImageImpulseRunner

display = drivers.Lcd()

runner = None
# if you don't want to see a camera preview, set this to False
show_camera = True
if (sys.platform == 'linux' and not os.environ.get('DISPLAY')):
    show_camera = False

def now():
    return round(time.time() * 1000)

def get_webcams():
    port_ids = []
    for port in range(5):
        print("Looking for a camera in port %s:" %port)
        camera = cv2.VideoCapture(port)
        if camera.isOpened():
            ret = camera.read()[0]
            if ret:
                backendName =camera.getBackendName()
                w = camera.get(3)
                h = camera.get(4)
                print("Camera %s (%s x %s) found in port %s " %(backendName,h,w, port))
                port_ids.append(port)
            camera.release()
    return port_ids

def sigint_handler(sig, frame):
    print('Interrupted')
    if (runner):
        runner.stop()
    sys.exit(0)

signal.signal(signal.SIGINT, sigint_handler)

def help():
    print('python classify.py <path_to_model.eim> <Camera port ID, only required when more than 1 camera is present>')

def main(argv):
    try:
        opts, args = getopt.getopt(argv, "h", ["--help"])
    except getopt.GetoptError:
        help()
        sys.exit(2)

    for opt, arg in opts:
        if opt in ('-h', '--help'):
            help()
            sys.exit()

    if len(args) == 0:
        help()
        sys.exit(2)

    model = args[0]

    dir_path = os.path.dirname(os.path.realpath(__file__))
    modelfile = os.path.join(dir_path, model)

    print('MODEL: ' + modelfile)

    with ImageImpulseRunner(modelfile) as runner:
        try:
            model_info = runner.init()
            print('Loaded runner for "' + model_info['project']['owner'] + ' / ' + model_info['project']['name'] + '"')
            labels = model_info['model_parameters']['labels']
            if len(args)>= 2:
                videoCaptureDeviceId = int(args[1])
            else:
                port_ids = get_webcams()
                if len(port_ids) == 0:
                    raise Exception('Cannot find any webcams')
                if len(args)<= 1 and len(port_ids)> 1:
                    raise Exception("Multiple cameras found. Add the camera port ID as a second argument to use to this script")
                videoCaptureDeviceId = int(port_ids[0])

            camera = cv2.VideoCapture(videoCaptureDeviceId)
            ret = camera.read()[0]
            if ret:
                backendName = camera.getBackendName()
                w = camera.get(3)
                h = camera.get(4)
                print("Camera %s (%s x %s) in port %s selected." %(backendName,h,w, videoCaptureDeviceId))
                camera.release()
            else:
                raise Exception("Couldn't initialize selected camera.")

            next_frame = 0 # limit to ~10 fps here

            for res, img in runner.classifier(videoCaptureDeviceId):
                if (next_frame > now()):
                    time.sleep((next_frame - now()) / 1000)

                # print('classification runner response', res)

                if "classification" in res["result"].keys():
                    print('Result (%d ms.) ' % (res['timing']['dsp'] + res['timing']['classification']), end='')
                    for label in labels:
                        score = res['result']['classification'][label]
                        print('%s: %.2f\t' % (label, score), end='')
                    print('', flush=True)

                elif "bounding_boxes" in res["result"].keys():
                    print('Found %d bounding boxes (%d ms.)' % (len(res["result"]["bounding_boxes"]), res['timing']['dsp'] + res['timing']['classification']))
                    prices = {"cadbury_DM" : 1.1, "indomie_goreng" : 0.4, "kitkat" : 0.6, "kitkat_gold" : 0.8, "mentos" : 0.7, "milo_nuggets" : 1.0, "pocky_chocolate" : 1.2, "toblerone" : 2.0};   # set item price
                    total = 0
                    for bb in res["result"]["bounding_boxes"]:
                        print('\t%s (%.2f): x=%d y=%d w=%d h=%d' % (bb['label'], bb['value'], bb['x'], bb['y'], bb['width'], bb['height']))
                        img = cv2.rectangle(img, (bb['x'], bb['y']), (bb['x'] + bb['width'], bb['y'] + bb['height']), (255, 0, 0), 1)
                        total += prices[bb['label']]    #set total price
                    print("Writing to display") # write to 16x2 LCD
                    display.lcd_display_string("Items: " + str(len(res["result"]["bounding_boxes"])), 1) # show total bounding boxes as items  
                    display.lcd_display_string("Total: $" + "{:.2f}".format(total), 2) # show total price

                if (show_camera):
                    cv2.imshow('edgeimpulse', cv2.cvtColor(img, cv2.COLOR_RGB2BGR))
                    if cv2.waitKey(1) == ord('q'):
                        break

                next_frame = now() + 100
        finally:
            if (runner):
                runner.stop()

if __name__ == "__main__":
   main(sys.argv[1:])

Credits

Samuel Alexander
5 projects • 29 followers

Comments