Sujay Samuel
Published © GPL3+

Chef Vision 500

The Intelligent culinary assistant for the visually impaired

IntermediateShowcase (no instructions)20 hours141

Things used in this project

Story

Read more

Schematics

Schematic and Connections

Code

main.py

Python
import threading
import speech_recognition as sr
import pyttsx3
# Initialize the recognizer and TTS engine
recognizer = sr.Recognizer()
engine = pyttsx3.init()

# Set thresholds for faster response
recognizer.energy_threshold = 300  # Adjust for your environment
recognizer.pause_threshold = 2   # Lower the pause threshold for quicker response

from label import label_loop
from ingredient_class import classify_image
from utensil_class import classify_image_u
from knife_safety import process_video
from cooked_level import cook_classify
from emergency import send_emergency_sms
from recipe import recipe_voice_commands
# Initialize a mutex
mutex = threading.Lock()

def speak(text):
    """Convert text to speech."""
    engine.say(text)
    engine.runAndWait()

def recognize_speech():
    """Capture and recognize speech using the microphone."""
    with sr.Microphone() as source:
        print("Listening...")
        audio = recognizer.listen(source, timeout=3, phrase_time_limit=5)
        try:
            command = recognizer.recognize_google(audio)
            print(f"You said: {command}")
            return command.lower()
        except sr.UnknownValueError:
            print("Sorry, I did not understand that.")
            return ""
        except sr.RequestError:
            print("Sorry, the service is down.")
            return ""
        except sr.WaitTimeoutError:
            print("Listening timed out.")
            return ""



def perform_task(command):
    """Perform tasks based on recognized speech."""
    with mutex:  # Acquire the mutex lock
        if "label" in command:
            label_loop()  # This will block the main loop until it finishes
        elif "vegetable" in command:
            classify_image()
        elif "safety" in command:
            process_video()
        elif "utensil" in command:
            classify_image_u()
        elif "level" in command:
            cooked_level()
        elif "emergency" in command:
            emergency_fn()
        elif "recipe" in command:
            recipe_voice_commands()
        else:
            speak("Sorry, I don't know how to do that.")

def main():
    """Main function to run the voice assistant."""
    while True:
        command = recognize_speech()
        if "hello buddy" in command:
            speak("Hello! What would you like me to help with?")
            
            # Wait for a specific function command after "Hello Buddy"
            task_command = recognize_speech()
            if task_command:
                perform_task(task_command)  # This will block the loop until the task is complete

                # Optional: Speak after the task is completed
                speak("Done!. What would you like to do next?")

if __name__ == "__main__":
    main()

utensil_class.py

Python
import cv2
import pyttsx3
from edge_impulse_linux.image import ImageImpulseRunner

def classify_image_u():
    runner = None
    camera_url = "your url"
    model_path = "model path"
    
    # Initialize pyttsx3 for speech
    engine = pyttsx3.init()

    try:
        with ImageImpulseRunner(model_path) as runner:
            model_info = runner.init()
            print(f'Loaded runner for "{model_info["project"]["owner"]} / {model_info["project"]["name"]}"')
            labels = model_info['model_parameters']['labels']

            # Classify 5 images
            for i in range(5):
                camera = cv2.VideoCapture(camera_url)
                if not camera.isOpened():
                    raise Exception("Couldn't initialize the camera. Check the URL or port ID.")
                ret, frame = camera.read()
                camera.release()
                if not ret:
                    raise Exception("Failed to capture image from camera.")

                img_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                features, cropped = runner.get_features_from_image_auto_studio_setings(img_rgb)
                res = runner.classify(features)

                speech_parts = []

                if "bounding_boxes" in res["result"].keys():
                    for bb in res["result"]["bounding_boxes"]:
                        label = bb["label"]
                        score = bb["value"]
                        
                        if score >= 0.30:  # Only consider bounding boxes with score >= 30
                            # Determine location
                            center_x = bb['x'] + bb['width'] // 2
                            center_y = bb['y'] + bb['height'] // 2

                            if center_x < cropped.shape[1] // 2 and center_y < cropped.shape[0] // 2:
                                position = "top-left"
                            elif center_x >= cropped.shape[1] // 2 and center_y < cropped.shape[0] // 2:
                                position = "top-right"
                            elif center_x < cropped.shape[1] // 2 and center_y >= cropped.shape[0] // 2:
                                position = "bottom-left"
                            else:
                                position = "bottom-right"

                            speech_parts.append(f'{label} at {position}')
                            
                            # Draw bounding box
                            cropped = cv2.rectangle(cropped, (bb['x'], bb['y']), (bb['x'] + bb['width'], bb['y'] + bb['height']), (255, 0, 0), 2)

                    cv2.imshow(f'Classified Image {i+1}', cv2.cvtColor(cropped, cv2.COLOR_RGB2BGR))
                    cv2.waitKey(500)  # Display each image for 500ms

                    # Prepare the speech output for this image
                    if speech_parts:
                        speech_text = "There is " + ", ".join(speech_parts) + "."
                        print(speech_text)
                        engine.say(speech_text)
                        engine.runAndWait()

            # Close all windows after displaying the last image
            cv2.destroyAllWindows()

    except Exception as e:
        print(f'Error: {e}')
    finally:
        if runner:
            runner.stop()
        cv2.destroyAllWindows()

# Call the function to classify images 5 times
#classify_image()

ingredient_class.py

Python
import cv2
import pyttsx3
from edge_impulse_linux.image import ImageImpulseRunner

def classify_image():
    runner = None
    
    camera_url = "your url"
    model_path = "model path"
    
    # Initialize pyttsx3 for speech
    engine = pyttsx3.init()

    try:
        with ImageImpulseRunner(model_path) as runner:
            model_info = runner.init()
            print(f'Loaded runner for "{model_info["project"]["owner"]} / {model_info["project"]["name"]}"')
            labels = model_info['model_parameters']['labels']

            # Classify 5 images
            for i in range(1):
                camera = cv2.VideoCapture(camera_url)
                if not camera.isOpened():
                    raise Exception("Couldn't initialize the camera. Check the URL or port ID.")
                ret, frame = camera.read()
                camera.release()
                if not ret:
                    raise Exception("Failed to capture image from camera.")

                img_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                features, cropped = runner.get_features_from_image_auto_studio_setings(img_rgb)
                res = runner.classify(features)

                speech_parts = []

                if "bounding_boxes" in res["result"].keys():
                    for bb in res["result"]["bounding_boxes"]:
                        label = bb["label"]
                        score = bb["value"]
                        
                        if score >= 0.30:  # Only consider bounding boxes with score >= 30
                            # Determine location
                            center_x = bb['x'] + bb['width'] // 2
                            center_y = bb['y'] + bb['height'] // 2

                            if center_x < cropped.shape[1] // 2 and center_y < cropped.shape[0] // 2:
                                position = "top-left"
                            elif center_x >= cropped.shape[1] // 2 and center_y < cropped.shape[0] // 2:
                                position = "top-right"
                            elif center_x < cropped.shape[1] // 2 and center_y >= cropped.shape[0] // 2:
                                position = "bottom-left"
                            else:
                                position = "bottom-right"

                            speech_parts.append(f'{label} at {position}')
                            
                            # Draw bounding box
                            cropped = cv2.rectangle(cropped, (bb['x'], bb['y']), (bb['x'] + bb['width'], bb['y'] + bb['height']), (255, 0, 0), 2)

                    cv2.imshow(f'Classified Image {i+1}', cv2.cvtColor(cropped, cv2.COLOR_RGB2BGR))
                    cv2.waitKey(500)  # Display each image for 500ms

                    # Prepare the speech output for this image
                    if speech_parts:
                        speech_text = "There is " + ", ".join(speech_parts) + "."
                        print(speech_text)
                        engine.say(speech_text)
                        engine.runAndWait()

            # Close all windows after displaying the last image
            cv2.destroyAllWindows()

    except Exception as e:
        print(f'Error: {e}')
    finally:
        if runner:
            runner.stop()
        cv2.destroyAllWindows()

# Call the function to classify images 5 times
#classify_image()

cook_level.py

Python
from keras.models import load_model  # TensorFlow is required for Keras to work
import cv2  # Install opencv-python
import numpy as np
import pyttsx3  # Install pyttsx3 for text-to-speech

# Disable scientific notation for clarity
np.set_printoptions(suppress=True)

def detect_and_speak_class(model_path, labels_path, camera_index=0):

    # Load the model
    model = load_model(model_path, compile=False)

    # Load the labels
    class_names = open(labels_path, "r").readlines()

    # Initialize the text-to-speech engine
    engine = pyttsx3.init()

    # Start video capture
    camera = cv2.VideoCapture(camera_index)

    while True:
        # Capture the frame from the camera
        ret, image = camera.read()

        # Resize the image to match the model's input size
        image = cv2.resize(image, (224, 224), interpolation=cv2.INTER_AREA)

        # Display the image in a window
        cv2.imshow("Webcam Image", image)

        # Prepare the image for prediction
        image = np.asarray(image, dtype=np.float32).reshape(1, 224, 224, 3)
        image = (image / 127.5) - 1  # Normalize the image

        # Make a prediction
        prediction = model.predict(image)
        index = np.argmax(prediction)
        class_name = class_names[index].strip()
        confidence_score = prediction[0][index]

        # Print prediction and confidence score
        print("Class:", class_name, end=" ")
        print("Confidence Score:", str(np.round(confidence_score * 100))[:-2], "%")

        # Prepare and speak the text
        speech_text = f"The class is {class_name} with a confidence score of {str(np.round(confidence_score * 100))[:-2]} percent."
        engine.say(speech_text)
        engine.runAndWait()

        # Listen for the ESC key to break the loop
        if cv2.waitKey(1) == 27:  # 27 is the ESC key
            break

    # Release the camera and close all OpenCV windows
    camera.release()
    cv2.destroyAllWindows()

# Example usage:
# detect_and_speak_class("keras_model.h5", "labels.txt")

emergency.py

Python
import serial
import json
import time

def send_emergency_sms():
    """
    Sends an emergency SMS using the Blues Notecard via Twilio.
    """

    # Local variable declarations
    serial_port = '/dev/ttyACM0'  # The serial port connected to the Notecard
    to_number = '+122345555543'  # Replace with your phone number
    from_number = '+q22314414151'  # Twilio sandbox number
    message = 'This is an emergency!'  # Emergency message

    try:
        # Open the serial port connected to the Notecard
        ser = serial.Serial(serial_port, 9600, timeout=1)

        # Define the Twilio API request
        twilio_request = {
            "req": "note.add",
            "file": "twilio.qo",
            "sync": True,
            "body": {
                "customMessage": message,
                "customTo": to_number,
                "customFrom": from_number
            }
        }

        # Send the command to the Notecard
        ser.write(json.dumps(twilio_request).encode('utf-8') + b'\n')

        # Read the response
        time.sleep(2)  # Give it some time to respond
        response = ser.readline().decode('utf-8')

        # Print the response from the Notecard
        print("Response:", response)

    except serial.SerialException as e:
        print(f"Error: {e}")

    finally:
        # Close the serial port
        if ser.is_open:
            ser.close()

# Example usage:
send_emergency_sms()

label.py

Python
import cv2
import pytesseract
import pyttsx3

# Initialize the text-to-speech engine
engine = pyttsx3.init()

url = "ESP32's URL"

cap = cv2.VideoCapture(url)
# List of target words to search for
target_words = ["SALT", "PEPPER", "SAUCE", "FRUIT", "MIXED", "Mayo", "BLACK"]

def speak(text):
    engine.say(text)
    engine.runAndWait()

def capture_and_process_photo():

    # Capture a single frame
    cap = cv2.VideoCapture(url)
    ret, frame = cap.read()

    if not ret:
        print("Failed to retrieve frame.")
        return None, False

    # Convert the frame to grayscale
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    
    # Apply Tesseract OCR
    text = pytesseract.image_to_string(gray, config='--psm 6')
    
    # Print the detected text
    print("Detected text:", text)
    
    # Check for the presence of target words
    for word in target_words:
        if word.lower() in text.lower():
            return word, True
            
    
    return None, False

def label_loop():
    cap = cv2.VideoCapture(url)
    detected_word, found = capture_and_process_photo()
    if found:
        response = f"This is {detected_word}."
        print(response)
        speak(response)  # Output the response as audio
    else:
        print("No target words detected. Please try again.")
    
    cap.release()
    cv2.destroyAllWindows()
    print("read function closed")

# Call this function from another script
# label_once()

knife_safety.py

Python
import cv2
import pyttsx3
import numpy as np
import mediapipe as mp
import threading
import time
from edge_impulse_linux.image import ImageImpulseRunner

# Initialize MediaPipe Hands
mpHands = mp.solutions.hands
hands = mpHands.Hands(
    static_image_mode=False,
    model_complexity=1,
    min_detection_confidence=0.75,
    min_tracking_confidence=0.75,
    max_num_hands=2
)

Draw = mp.solutions.drawing_utils

# Initialize pyttsx3 for speech
engine = pyttsx3.init()

# Function to check if two rectangles are close to each other
def are_rectangles_close(rect1, rect2, threshold=50):
    x1_min, y1_min, x1_max, y1_max = rect1
    x2_min, y2_min, x2_max, y2_max = rect2

    x1_center, y1_center = (x1_min + x1_max) / 2, (y1_min + y1_max) / 2
    x2_center, y2_center = (x2_min + x2_max) / 2, (y1_min + y1_max) / 2

    distance = np.sqrt((x1_center - x2_center) ** 2 + (y1_center - y2_center) ** 2)
    return distance < threshold

# Function to play voice alert
def play_voice_alert():
    text = "Please be careful with the sharp object"
    engine.say(text)
    engine.runAndWait()

# Function to classify image using Edge Impulse model
def classify_image(frame, runner):
    img_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    features, cropped = runner.get_features_from_image(img_rgb)
    res = runner.classify(features)

    knife_boxes = []

    if "bounding_boxes" in res["result"].keys():
        for bb in res["result"]["bounding_boxes"]:
            label = bb["label"]
            score = bb["value"]
            if label.lower() == "knife" and score >= 0.10:  # Assuming 'knife' is a label
                knife_boxes.append((bb['x'], bb['y'], bb['x'] + bb['width'], bb['y'] + bb['height']))
                cropped = cv2.rectangle(cropped, (bb['x'], bb['y']), (bb['x'] + bb['width'], bb['y'] + bb['height']), (255, 0, 0), 2)
    
    return knife_boxes, cropped

# Function to process video and detect gestures
def process_video():
    # Declare camera URL and model path within the function
    camera_url = "http://192.168.1.9:8080/video"
    model_path = "/home/raccoon/utensil.eim"

    # Start capturing video from webcam
    cap = cv2.VideoCapture(camera_url)

    # Load Edge Impulse model
    with ImageImpulseRunner(model_path) as runner:
        model_info = runner.init()
        print(f'Loaded runner for "{model_info["project"]["owner"]} / {model_info["project"]["name"]}"')

        last_alert_time = time.time()
        alert_interval = 5  # Minimum time interval between alerts in seconds
        thumbs_up_detected = False

        while not thumbs_up_detected:
            # Read video frame by frame
            ret, frame = cap.read()
            if not ret:
                print("Failed to capture image from camera.")
                break

            # Flip image along both axes
            frame = cv2.flip(frame, -1)

            # Convert BGR image to RGB image for hand detection
            frameRGB = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

            # Process the frame for knife detection
            knife_boxes, processed_frame = classify_image(frame, runner)

            # Process the RGB image for hand detection
            Process = hands.process(frameRGB)
            
            alert_triggered = False

            if Process.multi_hand_landmarks:
                for handlm in Process.multi_hand_landmarks:
                    # Draw landmarks
                    Draw.draw_landmarks(processed_frame, handlm, mpHands.HAND_CONNECTIONS)
                    
                    # Get bounding box coordinates for the hand
                    x_min, y_min = int(handlm.landmark[0].x * processed_frame.shape[1]), int(handlm.landmark[0].y * processed_frame.shape[0])
                    x_max, y_max = x_min, y_min
                    for lm in handlm.landmark:
                        x, y = int(lm.x * processed_frame.shape[1]), int(lm.y * processed_frame.shape[0])
                        x_min, y_min = min(x_min, x), min(y_min, y)
                        x_max, y_max = max(x_max, x), max(y_max, y)

                    hand_box = (x_min, y_min, x_max, y_max)
                    cv2.rectangle(processed_frame, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2)

                    # Check if hand is close to any knife
                    for knife_box in knife_boxes:
                        if are_rectangles_close(hand_box, knife_box):
                            current_time = time.time()
                            if current_time - last_alert_time > alert_interval:
                                alert_triggered = True
                                last_alert_time = current_time
                            cv2.putText(processed_frame, 'Alert! Hand and Knife Close!', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv2.LINE_AA)

            if alert_triggered:
                # Play voice alert asynchronously
                threading.Thread(target=play_voice_alert).start()

            # Display the processed video frame
            cv2.imshow('Image', processed_frame)
            if cv2.waitKey(1) & 0xff == ord('q'):
                break

            # Check for thumbs-up gesture to stop the function
            if Process.multi_hand_landmarks:
                for handlm in Process.multi_hand_landmarks:
                    landmarks = handlm.landmark
                    # Assuming thumb-up detection using specific landmarks
                    thumb_tip = landmarks[mpHands.HandLandmark.THUMB_TIP].x, landmarks[mpHands.HandLandmark.THUMB_TIP].y
                    thumb_base = landmarks[mpHands.HandLandmark.THUMB_CMC].x, landmarks[mpHands.HandLandmark.THUMB_CMC].y
                    if thumb_tip[1] < thumb_base[1]:  # Simple condition for thumbs-up (can be adjusted)
                        thumbs_up_detected = True
                        break

    cap.release()
    cv2.destroyAllWindows()
    print("Process stopped after thumbs-up gesture.")

# Example usage:
# process_video()

recipe.py

Python
import pyttsx3
import speech_recognition as sr
import time

# Initialize the text-to-speech engine
engine = pyttsx3.init()

# Define the recipe steps for a Spanish omelette
recipe_steps = [
    "Step 1: Peel and thinly slice 4 medium potatoes and 1 onion.",
    "Step 2: Heat a large frying pan over medium heat and add 4 tablespoons of olive oil.",
    "Step 3: Add the sliced potatoes and onion to the pan and cook for 10 minutes, stirring occasionally, until the potatoes are soft but not browned.",
    "Step 4: Crack 6 large eggs into a large bowl and beat them lightly with a fork.",
    "Step 5: Add the cooked potatoes and onion to the eggs and season with salt and pepper.",
    "Step 6: Wipe the pan clean and heat another 2 tablespoons of olive oil over medium heat.",
    "Step 7: Pour the egg and potato mixture back into the pan, spreading it out evenly.",
    "Step 8: Cook the omelette on one side for about 5 minutes, or until the edges start to set.",
    "Step 9: Place a large plate over the pan, carefully flip the omelette onto the plate, then slide it back into the pan to cook the other side for another 3-4 minutes.",
    "Step 10: Once fully cooked, slide the omelette onto a serving plate and let it cool slightly before slicing and serving."
]

# Function to read out a specific step
def read_step(step_number):
    if 1 <= step_number <= len(recipe_steps):
        engine.say(recipe_steps[step_number - 1])
        engine.runAndWait()
    else:
        engine.say("Sorry, that step number is out of range.")
        engine.runAndWait()

# Function to read all steps
def read_all_steps():
    for step in recipe_steps:
        engine.say(step)
        engine.runAndWait()
        time.sleep(5)

# Function to read steps from a specific step number
def read_steps_from(step_number):
    if 1 <= step_number <= len(recipe_steps):
        for step in recipe_steps[step_number - 1:]:
            engine.say(step)
            engine.runAndWait()
            time.sleep(5)
    else:
        engine.say("Sorry, that step number is out of range.")
        engine.runAndWait()

# Function to recognize speech commands
def recognize_speech():
    recognizer = sr.Recognizer()
    with sr.Microphone() as source:
        print("Listening for your command...")
        audio = recognizer.listen(source)

    try:
        command = recognizer.recognize_google(audio).lower()
        print(f"You said: {command}")
        return command
    except sr.UnknownValueError:
        engine.say("Sorry, I didn't catch that. Please repeat.")
        engine.runAndWait()
        return None
    except sr.RequestError:
        engine.say("Sorry, I couldn't reach the speech recognition service.")
        engine.runAndWait()
        return None

# Main function to handle voice commands
def recipe_voice_commands():
    while True:
        command = recognize_speech()
        if command is None:
            continue

        if "exit" in command:
            engine.say("Goodbye!")
            engine.runAndWait()
            break
        elif "step" in command:
            try:
                step_number = int(command.split()[1])
                read_step(step_number)
            except (ValueError, IndexError):
                engine.say("Please say a valid step number.")
                engine.runAndWait()
        elif "all steps" in command:
            read_all_steps()
        elif "from step" in command:
            try:
                step_number = int(command.split()[2])
                read_steps_from(step_number)
            except (ValueError, IndexError):
                engine.say("Please say a valid step number.")
                engine.runAndWait()
        else:
            engine.say("Sorry, I didn't understand that command.")
            engine.runAndWait()

# Run the main function
recipe_voice_commands()

camera_firmware

C/C++
#include "esp_camera.h"
#include <WiFi.h>

#define CAMERA_MODEL_XIAO_ESP32S3 // Has PSRAM

#include "camera_pins.h"

// ===========================
// Enter your WiFi credentials
// ===========================
const char* ssid = "Airtel_Shalom@home";
const char* password = "Jehovah#Jireh";

void startCameraServer();
void setupLedFlash(int pin);

void setup() {
  Serial.begin(115200);
  //while(!Serial);
  //Serial.setDebugOutput(true);
  //Serial.println();

  camera_config_t config;
  config.ledc_channel = LEDC_CHANNEL_0;
  config.ledc_timer = LEDC_TIMER_0;
  config.pin_d0 = Y2_GPIO_NUM;
  config.pin_d1 = Y3_GPIO_NUM;
  config.pin_d2 = Y4_GPIO_NUM;
  config.pin_d3 = Y5_GPIO_NUM;
  config.pin_d4 = Y6_GPIO_NUM;
  config.pin_d5 = Y7_GPIO_NUM;
  config.pin_d6 = Y8_GPIO_NUM;
  config.pin_d7 = Y9_GPIO_NUM;
  config.pin_xclk = XCLK_GPIO_NUM;
  config.pin_pclk = PCLK_GPIO_NUM;
  config.pin_vsync = VSYNC_GPIO_NUM;
  config.pin_href = HREF_GPIO_NUM;
  config.pin_sscb_sda = SIOD_GPIO_NUM;
  config.pin_sscb_scl = SIOC_GPIO_NUM;
  config.pin_pwdn = PWDN_GPIO_NUM;
  config.pin_reset = RESET_GPIO_NUM;
  config.xclk_freq_hz = 20000000;
  config.frame_size = FRAMESIZE_UXGA;
  config.pixel_format = PIXFORMAT_JPEG; // for streaming
  //config.pixel_format = PIXFORMAT_RGB565; // for face detection/recognition
  config.grab_mode = CAMERA_GRAB_WHEN_EMPTY;
  config.fb_location = CAMERA_FB_IN_PSRAM;
  config.jpeg_quality = 12;
  config.fb_count = 1;
  
  // if PSRAM IC present, init with UXGA resolution and higher JPEG quality
  //                      for larger pre-allocated frame buffer.
  if(config.pixel_format == PIXFORMAT_JPEG){
    if(psramFound()){
      config.jpeg_quality = 10;
      config.fb_count = 2;
      config.grab_mode = CAMERA_GRAB_LATEST;
    } else {
      // Limit the frame size when PSRAM is not available
      config.frame_size = FRAMESIZE_SVGA;
      config.fb_location = CAMERA_FB_IN_DRAM;
    }
  } else {
    // Best option for face detection/recognition
    config.frame_size = FRAMESIZE_240X240;
#if CONFIG_IDF_TARGET_ESP32S3
    config.fb_count = 2;
#endif
  }

  // camera init
  esp_err_t err = esp_camera_init(&config);
  if (err != ESP_OK) {
    //Serial.printf("Camera init failed with error 0x%x", err);
    return;
  }

  sensor_t * s = esp_camera_sensor_get();
  // initial sensors are flipped vertically and colors are a bit saturated
  if (s->id.PID == OV3660_PID) {
    s->set_vflip(s, 1); // flip it back
    s->set_brightness(s, 1); // up the brightness just a bit
    s->set_saturation(s, -2); // lower the saturation
  }
  // drop down frame size for higher initial frame rate
  if(config.pixel_format == PIXFORMAT_JPEG){
    s->set_framesize(s, FRAMESIZE_QVGA);
  }

// Setup LED FLash if LED pin is defined in camera_pins.h
#if defined(LED_GPIO_NUM)
  setupLedFlash(LED_GPIO_NUM);
#endif

  WiFi.begin(ssid, password);
  WiFi.setSleep(false);

  while (WiFi.status() != WL_CONNECTED) {
    delay(500);
    //Serial.print(".");
  }
  //Serial.println("");
  //Serial.println("WiFi connected");

  startCameraServer();

  Serial.print("Camera Ready! Use 'http://");
  Serial.print(WiFi.localIP());
  //Serial.println("' to connect");
}

void loop() {
  // Do nothing. Everything is done in another task by the web server
  delay(10000);
}

Credits

Sujay Samuel

Sujay Samuel

2 projects • 2 followers
Newbie Embedded Engineer. Highly interested in the fields of Embedded systems, VLSI and Machine Learning

Comments