Timothy Malche
Published © MIT

AiSpark: AI based Smart Parking System

A Vision AI based system that give real time information of availability of parking space for charging of electrical car at charging station

AdvancedWork in progressOver 1 day1,360
AiSpark: AI based Smart Parking System

Things used in this project

Hardware components

Kria KV260 Vision AI Starter Kit
AMD Kria KV260 Vision AI Starter Kit
×1
USB Web Camera
×1
4G WiFi Router
×1

Software apps and online services

Ubuntu for Kria KV260
Edge Impulse Studio
Edge Impulse Studio

Story

Read more

Schematics

Web App UI Image

Use this image as car.jpg for WebApp

Development Environment Setup

Code

AiSpark_WebApp.html

HTML
Web Application with PAHO MQTT JavaScript Library
<html>
<head>
<script src="https://cdnjs.cloudflare.com/ajax/libs/paho-mqtt/1.0.1/mqttws31.min.js" type="text/javascript"></script>
<style>
body{
	margin-left:100px;
	margin-top:20px;
}
div.polaroid {
  width: 250px;
  box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2), 0 6px 20px 0 rgba(0, 0, 0, 0.19);
  text-align: center;
}

div.container {
  padding: 10px;
}
</style>
</head>
<body>


<h1>AiSpark: AI based Smart Parking System </h1>

<p>This app display available parking space at Electrical Charging Station:</p>

<div class="polaroid">
  <img src="car.jpg" alt="AISpark" style="width:100%">
  <div class="container">
  	<h4>Parking Space</h4>
  	<h4>Total: 3</h4>
    <h4 id="msg"></h4>
  </div>
</div>


<script type="text/javascript">
// Create a client instance

totalSpace = 3;

client = new Paho.MQTT.Client("mqtt.eclipseprojects.io", 80 ,"AiSpark_0002");

// set callback handlers
client.onConnectionLost = onConnectionLost;
client.onMessageArrived = onMessageArrived;

// connect the client
client.connect({onSuccess:onConnect});


// called when the client connects
function onConnect() {
  // Once a connection has been made, make a subscription and send a message.
  console.log("onConnect");
  client.subscribe("object_count");
  
}

// called when the client loses its connection
function onConnectionLost(responseObject) {
  if (responseObject.errorCode !== 0) {
    console.log("onConnectionLost:"+responseObject.errorMessage);
  }
}

  function doFail(e){
    console.log(e);
  }

// called when a message arrives
function onMessageArrived(message) {
  console.log("onMessageArrived:"+message.payloadString);
  //Calculating Available Space
  availableSpace = totalSpace - parseInt(message.payloadString);
  document.getElementById("msg").innerHTML = "Available: " + availableSpace.toString();
}




</script>

</body>

</html>

camera.cpp

C/C++
Main source file should be inside /example-standalone-inferencing-linux/source directory.
/* Edge Impulse Linux SDK
 * Copyright (c) 2021 EdgeImpulse Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include <unistd.h>
#include "opencv2/opencv.hpp"
#include "opencv2/videoio/videoio_c.h"
#include "edge-impulse-sdk/classifier/ei_run_classifier.h"
#include "iostream"



/*---------------------------------------- MQTT ----------------------------------------*/
#include "stdlib.h"
#include "string.h"
#include "MQTTClient.h"

#define ADDRESS     "tcp://mqtt.eclipseprojects.io:1883"
#define CLIENTID    "AiSpark_0001"
#define TOPIC       "object_count"
#define QOS         1
#define TIMEOUT     10000L

int MQTT_Connect_and_Publish(char PAYLOAD[]){

MQTTClient client;
    MQTTClient_connectOptions conn_opts = MQTTClient_connectOptions_initializer;
    MQTTClient_message pubmsg = MQTTClient_message_initializer;
    MQTTClient_deliveryToken token;
    int rc;

    MQTTClient_create(&client, ADDRESS, CLIENTID,
        MQTTCLIENT_PERSISTENCE_NONE, NULL);
    conn_opts.keepAliveInterval = 20;
    conn_opts.cleansession = 1;
	
    if ((rc = MQTTClient_connect(client, &conn_opts)) != MQTTCLIENT_SUCCESS)
    {
        printf("Failed to connect, return code %d\n", rc);
        exit(-1);
    }
    strcpy(PAYLOAD, PAYLOAD);
    pubmsg.payload = PAYLOAD;
    pubmsg.payloadlen = strlen(PAYLOAD);
    pubmsg.qos = QOS;
    pubmsg.retained = 0;
    MQTTClient_publishMessage(client, TOPIC, &pubmsg, &token);
    printf("Waiting for up to %d seconds for publication of %s\n"
            "on topic %s for client with ClientID: %s\n",
            (int)(TIMEOUT/1000), PAYLOAD, TOPIC, CLIENTID);
    rc = MQTTClient_waitForCompletion(client, token, TIMEOUT);
    printf("Message with delivery token %d delivered\n", token);
    MQTTClient_disconnect(client, 10000);
    MQTTClient_destroy(&client);
    return rc;

}

/*----------------------------------------MQTT--------------------------------------*/


static bool use_debug = false;

// If you don't want to allocate this much memory you can use a signal_t structure as well
// and read directly from a cv::Mat object, but on Linux this should be OK
static float features[EI_CLASSIFIER_INPUT_WIDTH * EI_CLASSIFIER_INPUT_HEIGHT];

/**
 * Resize and crop to the set width/height from model_metadata.h
 */
void resize_and_crop(cv::Mat *in_frame, cv::Mat *out_frame) {
    // to resize... we first need to know the factor
    float factor_w = static_cast<float>(EI_CLASSIFIER_INPUT_WIDTH) / static_cast<float>(in_frame->cols);
    float factor_h = static_cast<float>(EI_CLASSIFIER_INPUT_HEIGHT) / static_cast<float>(in_frame->rows);

    float largest_factor = factor_w > factor_h ? factor_w : factor_h;

    cv::Size resize_size(static_cast<int>(largest_factor * static_cast<float>(in_frame->cols)),
        static_cast<int>(largest_factor * static_cast<float>(in_frame->rows)));

    cv::Mat resized;
    cv::resize(*in_frame, resized, resize_size);

    int crop_x = resize_size.width > resize_size.height ?
        (resize_size.width - resize_size.height) / 2 :
        0;
    int crop_y = resize_size.height > resize_size.width ?
        (resize_size.height - resize_size.width) / 2 :
        0;

    cv::Rect crop_region(crop_x, crop_y, EI_CLASSIFIER_INPUT_WIDTH, EI_CLASSIFIER_INPUT_HEIGHT);

    if (use_debug) {
        printf("crop_region x=%d y=%d width=%d height=%d\n", crop_x, crop_y, EI_CLASSIFIER_INPUT_WIDTH, EI_CLASSIFIER_INPUT_HEIGHT);
    }

    *out_frame = resized(crop_region);
}

int main(int argc, char** argv) {
    // If you see: OpenCV: not authorized to capture video (status 0), requesting... Abort trap: 6
    // This might be a permissions issue. Are you running this command from a simulated shell (like in Visual Studio Code)?
    // Try it from a real terminal.

    if (argc < 2) {
        printf("Requires one parameter (ID of the webcam).\n");
        printf("You can find these via `v4l2-ctl --list-devices`.\n");
        printf("E.g. for:\n");
        printf("    C922 Pro Stream Webcam (usb-70090000.xusb-2.1):\n");
	    printf("            /dev/video0\n");
        printf("The ID of the webcam is 0\n");
        exit(1);
    }

    for (int ix = 2; ix < argc; ix++) {
        if (strcmp(argv[ix], "--debug") == 0) {
            printf("Enabling debug mode\n");
            use_debug = true;
        }
    }

    // open the webcam...
    cv::VideoCapture camera(atoi(argv[1]));
    if (!camera.isOpened()) {
        std::cerr << "ERROR: Could not open camera" << std::endl;
        return 1;
    }

    if (use_debug) {
        // create a window to display the images from the webcam
        cv::namedWindow("Webcam", cv::WINDOW_AUTOSIZE);
    }

    // this will contain the image from the webcam
    cv::Mat frame;

    // display the frame until you press a key
    while (1) {
        // 100ms. between inference
        int64_t next_frame = (int64_t)(ei_read_timer_ms() + 100);

        // capture the next frame from the webcam
        camera >> frame;

        cv::Mat cropped;
        resize_and_crop(&frame, &cropped);

        size_t feature_ix = 0;
        for (int rx = 0; rx < (int)cropped.rows; rx++) {
            for (int cx = 0; cx < (int)cropped.cols; cx++) {
                cv::Vec3b pixel = cropped.at<cv::Vec3b>(rx, cx);
                uint8_t b = pixel.val[0];
                uint8_t g = pixel.val[1];
                uint8_t r = pixel.val[2];
                features[feature_ix++] = (r << 16) + (g << 8) + b;
            }
        }

        ei_impulse_result_t result;

        // construct a signal from the features buffer
        signal_t signal;
        numpy::signal_from_buffer(features, EI_CLASSIFIER_INPUT_WIDTH * EI_CLASSIFIER_INPUT_HEIGHT, &signal);

        // and run the classifier
        EI_IMPULSE_ERROR res = run_classifier(&signal, &result, false);
        if (res != 0) {
            printf("ERR: Failed to run classifier (%d)\n", res);
            return 1;
        }

    #if EI_CLASSIFIER_OBJECT_DETECTION == 1
        printf("Classification result (%d ms.):\n", result.timing.dsp + result.timing.classification);
        bool found_bb = false;
	
	int num_bboxes = 0;
	
        for (size_t ix = 0; ix < EI_CLASSIFIER_OBJECT_DETECTION_COUNT; ix++) {
            auto bb = result.bounding_boxes[ix];
            if (bb.value == 0) {
                continue;
            }

            found_bb = true;
            printf("    %s (%f) [ x: %u, y: %u, width: %u, height: %u ]\n", bb.label, bb.value, bb.x, bb.y, bb.width, bb.height);
	    num_bboxes ++; //counting bounding boxes
        }

	printf("\nTotal Objects Detected = %d\n", num_bboxes);
    	char payload[10];
    	sprintf(payload, "%d", num_bboxes);
    	MQTT_Connect_and_Publish(payload); // sending object count to MQTT server

        if (!found_bb) {
            printf("    no objects found\n");
        }
    #else
        printf("%d ms. ", result.timing.dsp + result.timing.classification);
        for (size_t ix = 0; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) {
            printf("%s: %.05f", result.classification[ix].label, result.classification[ix].value);
            if (ix != EI_CLASSIFIER_LABEL_COUNT - 1) {
                printf(", ");
            }
        }
        printf("\n");
    #endif

        // show the image on the window
        if (use_debug) {
            cv::imshow("Webcam", cropped);
            // wait (10ms) for a key to be pressed
            if (cv::waitKey(10) >= 0)
                break;
        }

        int64_t sleep_ms = next_frame > (int64_t)ei_read_timer_ms() ? next_frame - (int64_t)ei_read_timer_ms() : 0;
        if (sleep_ms > 0) {
            usleep(sleep_ms * 1000);
        }
    }
    return 0;
}

#if !defined(EI_CLASSIFIER_SENSOR) || EI_CLASSIFIER_SENSOR != EI_CLASSIFIER_SENSOR_CAMERA
#error "Invalid model for current sensor."
#endif

Makefile

Makefile
The Makefile should be in project root.
EI_SDK?=edge-impulse-sdk

UNAME_S := $(shell uname -s)

CFLAGS +=  -Wall -g -Wno-strict-aliasing
CFLAGS += -I.
CFLAGS += -Isource
CFLAGS += -Imodel-parameters
CFLAGS += -Itflite-model
CFLAGS += -Ithird_party/
CFLAGS += -Os
CFLAGS += -DNDEBUG
CFLAGS += -DEI_CLASSIFIER_ENABLE_DETECTION_POSTPROCESS_OP
CFLAGS += -g
CXXFLAGS += -std=c++14
LDFLAGS += -lm -lstdc++
LDFLAGS += -lpaho-mqtt3c

CSOURCES = $(wildcard edge-impulse-sdk/CMSIS/DSP/Source/TransformFunctions/*.c) $(wildcard edge-impulse-sdk/CMSIS/DSP/Source/CommonTables/*.c) $(wildcard edge-impulse-sdk/CMSIS/DSP/Source/BasicMathFunctions/*.c) $(wildcard edge-impulse-sdk/CMSIS/DSP/Source/ComplexMathFunctions/*.c) $(wildcard edge-impulse-sdk/CMSIS/DSP/Source/FastMathFunctions/*.c) $(wildcard edge-impulse-sdk/CMSIS/DSP/Source/SupportFunctions/*.c) $(wildcard edge-impulse-sdk/CMSIS/DSP/Source/MatrixFunctions/*.c) $(wildcard edge-impulse-sdk/CMSIS/DSP/Source/StatisticsFunctions/*.c)
CXXSOURCES = $(wildcard tflite-model/*.cpp) $(wildcard edge-impulse-sdk/dsp/kissfft/*.cpp) $(wildcard edge-impulse-sdk/dsp/dct/*.cpp) $(wildcard ./edge-impulse-sdk/dsp/memory.cpp) $(wildcard edge-impulse-sdk/porting/posix/*.c*) $(wildcard edge-impulse-sdk/porting/mingw32/*.c*)
CCSOURCES =

ifeq (${USE_FULL_TFLITE},1)
CFLAGS += -DEI_CLASSIFIER_USE_FULL_TFLITE=1
CFLAGS += -Itensorflow-lite/

ifeq (${TARGET_LINUX_ARMV7},1)
LDFLAGS += -L./tflite/linux-armv7 -Wl,--no-as-needed -ldl -ltensorflow-lite -lcpuinfo -lfarmhash -lfft2d_fftsg -lfft2d_fftsg2d -lruy -lXNNPACK -lpthread
endif # TARGET_LINUX_ARMV7
ifeq (${TARGET_LINUX_AARCH64},1)
LDFLAGS += -L./tflite/linux-aarch64 -ldl -ltensorflow-lite -lcpuinfo -lfarmhash -lfft2d_fftsg -lfft2d_fftsg2d -lruy -lXNNPACK -lpthread
endif # TARGET_LINUX_AARCH64
ifeq (${TARGET_LINUX_X86},1)
LDFLAGS += -L./tflite/linux-x86 -Wl,--no-as-needed -ldl -ltensorflow-lite -lcpuinfo -lfarmhash -lfft2d_fftsg -lfft2d_fftsg2d -lruy -lXNNPACK -lpthread
endif # TARGET_LINUX_X86
ifeq (${TARGET_MAC_X86_64},1)
LDFLAGS += -L./tflite/mac-x86_64 -ltensorflow-lite -lcpuinfo -lfarmhash -lfft2d_fftsg -lfft2d_fftsg2d -lruy -lXNNPACK -lpthreadpool -lclog
endif # TARGET_MAC_X86_64

endif # USE_FULL_TFLITE

ifeq (${TARGET_JETSON_NANO},1)
LDFLAGS += tflite/linux-jetson-nano/libei_debug.a -Ltflite/linux-jetson-nano -lcudart -lnvinfer -lnvonnxparser  -Wl,--warn-unresolved-symbols,--unresolved-symbols=ignore-in-shared-libs

ifeq (,$(wildcard ./tflite/linux-jetson-nano/libcudart.so))
$(error Missing shared libraries for TensorRT. Install them via `sh ./tflite/linux-jetson-nano/download.sh`)
endif
endif # TARGET_JETSON_NANO

# Neither Jetson Nano (TensorRT) and neither full TFLite? Then fall back to TFLM kernels
ifneq (${TARGET_JETSON_NANO},1)
ifneq (${USE_FULL_TFLITE},1)
CFLAGS += -DTF_LITE_DISABLE_X86_NEON=1
CSOURCES += edge-impulse-sdk/tensorflow/lite/c/common.c
CCSOURCES += $(wildcard edge-impulse-sdk/tensorflow/lite/kernels/*.cc) $(wildcard edge-impulse-sdk/tensorflow/lite/kernels/internal/*.cc) $(wildcard edge-impulse-sdk/tensorflow/lite/micro/kernels/*.cc) $(wildcard edge-impulse-sdk/tensorflow/lite/micro/*.cc) $(wildcard edge-impulse-sdk/tensorflow/lite/micro/memory_planner/*.cc) $(wildcard edge-impulse-sdk/tensorflow/lite/core/api/*.cc)
endif # (${USE_FULL_TFLITE},1)
endif # ifneq (${TARGET_JETSON_NANO},1)

ifeq (${APP_CUSTOM},1)
NAME = custom
CXXSOURCES += source/custom.cpp
else ifeq (${APP_AUDIO},1)
NAME = audio
CXXSOURCES += source/audio.cpp
LDFLAGS += -lasound
else ifeq (${APP_CAMERA},1)
NAME = camera
CFLAGS += -Iopencv/build_opencv/ -Iopencv/opencv/include -Iopencv/opencv/3rdparty/include -Iopencv/opencv/3rdparty/quirc/include -Iopencv/opencv/3rdparty/carotene/include -Iopencv/opencv/3rdparty/ittnotify/include -Iopencv/opencv/3rdparty/openvx/include -Iopencv/opencv/modules/video/include -Iopencv/opencv/modules/flann/include -Iopencv/opencv/modules/core/include -Iopencv/opencv/modules/stitching/include -Iopencv/opencv/modules/imgproc/include -Iopencv/opencv/modules/objdetect/include -Iopencv/opencv/modules/gapi/include -Iopencv/opencv/modules/world/include -Iopencv/opencv/modules/ml/include -Iopencv/opencv/modules/imgcodecs/include -Iopencv/opencv/modules/dnn/include -Iopencv/opencv/modules/dnn/src/vkcom/include -Iopencv/opencv/modules/dnn/src/ocl4dnn/include -Iopencv/opencv/modules/dnn/src/tengine4dnn/include -Iopencv/opencv/modules/videoio/include -Iopencv/opencv/modules/highgui/include -Iopencv/opencv/modules/features2d/include -Iopencv/opencv/modules/ts/include -Iopencv/opencv/modules/photo/include -Iopencv/opencv/modules/calib3d/include
CXXSOURCES += source/camera.cpp
ifeq ($(UNAME_S),Linux) # on Linux set the library paths as well
LDFLAGS += -L/usr/local/lib -Wl,-R/usr/local/lib
endif
LDFLAGS += -lopencv_ml -lopencv_objdetect -lopencv_stitching  -lopencv_calib3d -lopencv_features2d -lopencv_highgui -lopencv_videoio -lopencv_imgcodecs -lopencv_video -lopencv_photo -lopencv_imgproc -lopencv_flann -lopencv_core
else ifeq (${APP_COLLECT},1)
NAME = collect
CXXSOURCES += source/collect.cpp
CSOURCES += $(wildcard ingestion-sdk-c/QCBOR/src/*.c) $(wildcard ingestion-sdk-c/mbedtls/library/*.c)
CFLAGS += -Iingestion-sdk-c/mbedtls/include -Iingestion-sdk-c/mbedtls/crypto/include -Iingestion-sdk-c/QCBOR/inc -Iingestion-sdk-c/QCBOR/src -Iingestion-sdk-c/inc -Iingestion-sdk-c/inc/signing
else ifeq (${APP_EIM},1)
NAME = model.eim
CXXSOURCES += source/eim.cpp
CFLAGS += -Ithird_party/
else
$(error Missing application, should have either APP_CUSTOM=1, APP_AUDIO=1, APP_CAMERA=1, APP_COLLECT=1 or APP_EIM=1)
endif

COBJECTS := $(patsubst %.c,%.o,$(CSOURCES))
CXXOBJECTS := $(patsubst %.cpp,%.o,$(CXXSOURCES))
CCOBJECTS := $(patsubst %.cc,%.o,$(CCSOURCES))

all: runner

.PHONY: runner clean

$(COBJECTS) : %.o : %.c
$(CXXOBJECTS) : %.o : %.cpp
$(CCOBJECTS) : %.o : %.cc

%.o: %.c
	$(CC) $(CFLAGS) -c $^ -o $@

%.o: %.cc
	$(CXX) $(CFLAGS) $(CXXFLAGS) -c $^ -o $@

%.o: %.cpp
	$(CXX) $(CFLAGS) $(CXXFLAGS) -c $^ -o $@

runner: $(COBJECTS) $(CXXOBJECTS) $(CCOBJECTS)
	mkdir -p build
	$(CXX) $(COBJECTS) $(CXXOBJECTS) $(CCOBJECTS) -o build/$(NAME) $(LDFLAGS)

clean:
	rm -f $(COBJECTS)
	rm -f $(CCOBJECTS)
	rm -f $(CXXOBJECTS)

Credits

Timothy Malche
17 projects • 22 followers
Maker, Educator, Researcher

Comments