vincent wong
Published © GPL3+

Activity Intensity Tracker

A tracker which reads the sensors' data and sends this data via bluetooth UART connection to a mobile device for display.

IntermediateFull instructions provided439

Things used in this project

Hardware components

nRF5340 Development Kit
Nordic Semiconductor nRF5340 Development Kit
×1
Power Profiler Kit II
Nordic Semiconductor Power Profiler Kit II
×1
Analog Accelerometer: ADXL335
Adafruit Analog Accelerometer: ADXL335
×1

Software apps and online services

nRF Connect SDK
Nordic Semiconductor nRF Connect SDK
Nordic Semiconductor nRF Connect for Desktop
Edge Impulse Studio
Edge Impulse Studio
Nordic Semiconductor nRF Connect for Mobile
Nordic Semiconductor nRF Toolbox

Story

Read more

Code

prj.conf (data collection)

JavaScript
CONFIG_DEPRECATED_ZEPHYR_INT_TYPES=y
CONFIG_NRFX_PWM0=y
CONFIG_PWM=y
CONFIG_PWM_NRFX=y
CONFIG_ADC=y
CONFIG_CBPRINTF_FP_SUPPORT=y

main.c (data collection)

JavaScript
#include <zephyr.h>
#include <sys/printk.h>
#include <drivers/pwm.h>

#if defined(CONFIG_BOARD_NRF5340DK_NRF5340_CPUAPP) ||  defined(CONFIG_BOARD_NRF5340DK_NRF5340_CPUAPPNS) || defined(CONFIG_BOARD_NRF9160DK_NRF9160NS) || defined(CONFIG_BOARD_NRF9160DK_NRF9160)

/*ADC definitions and includes*/
#include <hal/nrf_saadc.h>
#define ADC_DEVICE_NAME DT_LABEL(DT_INST(0, nordic_nrf_saadc))
#define ADC_RESOLUTION 10
#define ADC_GAIN ADC_GAIN_1_6
#define ADC_REFERENCE ADC_REF_INTERNAL
#define ADC_ACQUISITION_TIME ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 10)
#define ADC_1ST_CHANNEL_ID 0  
#define ADC_1ST_CHANNEL_INPUT NRF_SAADC_INPUT_AIN0
#define ADC_2ND_CHANNEL_ID 1  
#define ADC_2ND_CHANNEL_INPUT NRF_SAADC_INPUT_AIN1
#define ADC_3RD_CHANNEL_ID 2  
#define ADC_3RD_CHANNEL_INPUT NRF_SAADC_INPUT_AIN2

#define PWM_DEVICE_NAME DT_PROP(DT_NODELABEL(pwm0), label)
#define PWM_CH0_PIN DT_PROP(DT_NODELABEL(pwm0), ch0_pin)

#else
#error "Choose supported board or add new board for the application"
#endif

#include <zephyr.h>
#include <device.h>
#include <drivers/gpio.h>
#include <drivers/adc.h>
#include <string.h>
#include <drivers/pwm.h>

#include <stdio.h>

#define PWM_MAX 253
#define TIMER_INTERVAL_MSEC 200
//#define TIMER_INTERVAL_MSEC 200
#define BUFFER_SIZE 3

struct k_timer my_timer;
const struct device *adc_dev;
const struct device *pwm_dev;

static struct adc_channel_cfg m_1st_channel_cfg = {
	.gain = ADC_GAIN,
	.reference = ADC_REFERENCE,
	.acquisition_time = ADC_ACQUISITION_TIME,
	.channel_id = ADC_1ST_CHANNEL_ID,
#if defined(CONFIG_ADC_CONFIGURABLE_INPUTS)
	.input_positive = ADC_1ST_CHANNEL_INPUT,
#endif
};

static uint8_t channel_ids[BUFFER_SIZE] = {
	ADC_1ST_CHANNEL_ID,
	ADC_2ND_CHANNEL_ID,
	ADC_3RD_CHANNEL_ID,
};

static int16_t m_sample_buffer[BUFFER_SIZE];

static int32_t adc_vref;

static struct adc_sequence sequence = {
    .channels = BIT(ADC_1ST_CHANNEL_ID),
    .buffer = m_sample_buffer,
    .buffer_size = sizeof(m_sample_buffer),
    .resolution = ADC_RESOLUTION,
};

static int adc_sample_data_forwarder(void)
{
	int ret;

	if (!adc_dev) {
		return -1;
	}

	ret = adc_read(adc_dev, &sequence);
	if (ret) {
        printk("adc_read() failed with code %d\n", ret);
	}

	for (int i = 0; i < BUFFER_SIZE - 1; i++) {

			float raw_value = (float)m_sample_buffer[i];

			printf("%.3f,", raw_value);

	}
    printf("%.3f\r\n", (float)m_sample_buffer[BUFFER_SIZE - 1]);

	return ret;
}

void adc_sample_event(struct k_timer *timer_id){
    int err = adc_sample_data_forwarder();
    if (err) {
        printk("Error in adc sampling: %d\n", err);
    }
}

void main(void)
{
    int err;

    //PWM0 setup
    pwm_dev = device_get_binding(PWM_DEVICE_NAME);
    if (!pwm_dev) {
	    printk("device_get_binding() PWM0 failed\n");
	}
    
    //Timer setup
    k_timer_init(&my_timer, adc_sample_event, NULL);
    k_timer_start(&my_timer, K_MSEC(TIMER_INTERVAL_MSEC), K_MSEC(TIMER_INTERVAL_MSEC));


    //ADC0 setup
    adc_dev = device_get_binding(ADC_DEVICE_NAME);
	if (!adc_dev) {
        printk("device_get_binding ADC_0 (=%s) failed\n", ADC_DEVICE_NAME);
    } 
    
	/*
	 * Configure channels individually prior to sampling
	 */
	for (uint8_t i = 0; i < BUFFER_SIZE; i++) {
		m_1st_channel_cfg.channel_id = channel_ids[i];
#ifdef CONFIG_ADC_NRFX_SAADC
		m_1st_channel_cfg.input_positive = SAADC_CH_PSELP_PSELP_AnalogInput0
					     + channel_ids[i];
#endif

		err = adc_channel_setup(adc_dev, &m_1st_channel_cfg);
        if (err) {
            printk("Error in adc setup: %d\n", err);
        }

		sequence.channels |= BIT(channel_ids[i]);
	}

	adc_vref = adc_ref_internal(adc_dev);

    #if defined(CONFIG_BOARD_NRF9160DK_NRF9160NS) ||  defined(CONFIG_BOARD_NRF5340DK_NRF5340_CPUAPPNS)
    NRF_SAADC_NS->TASKS_CALIBRATEOFFSET = 1;
    #elif defined(CONFIG_BOARD_NRF9160DK_NRF9160) || defined(CONFIG_BOARD_NRF5340DK_NRF5340_CPUAPP)
    NRF_SAADC->TASKS_CALIBRATEOFFSET = 1;
    #else
    #error "Choose supported board or add new board for the application"
    #endif
}

trained_model_compiled.h

C/C++
Part of the C++ library built at Edge Impulse studio.
/* Generated by Edge Impulse
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
// Generated on: 06.06.2021 14:58:37

#ifndef trained_model_GEN_H
#define trained_model_GEN_H

#include "edge-impulse-sdk/tensorflow/lite/c/common.h"

// Sets up the model with init and prepare steps.
TfLiteStatus trained_model_init( void*(*alloc_fnc)(size_t,size_t) );
// Returns the input tensor with the given index.
TfLiteTensor *trained_model_input(int index);
// Returns the output tensor with the given index.
TfLiteTensor *trained_model_output(int index);
// Runs inference for the model.
TfLiteStatus trained_model_invoke();
//Frees memory allocated
TfLiteStatus trained_model_reset( void (*free)(void* ptr) );


// Returns the number of input tensors.
inline size_t trained_model_inputs() {
  return 1;
}
// Returns the number of output tensors.
inline size_t trained_model_outputs() {
  return 1;
}

inline void *trained_model_input_ptr(int index) {
  return trained_model_input(index)->data.data;
}
inline size_t trained_model_input_size(int index) {
  return trained_model_input(index)->bytes;
}
inline int trained_model_input_dims_len(int index) {
  return trained_model_input(index)->dims->data[0];
}
inline int *trained_model_input_dims(int index) {
  return &trained_model_input(index)->dims->data[1];
}

inline void *trained_model_output_ptr(int index) {
  return trained_model_output(index)->data.data;
}
inline size_t trained_model_output_size(int index) {
  return trained_model_output(index)->bytes;
}
inline int trained_model_output_dims_len(int index) {
  return trained_model_output(index)->dims->data[0];
}
inline int *trained_model_output_dims(int index) {
  return &trained_model_output(index)->dims->data[1];
}

#endif

model_metadata.h

C/C++
Part of the C++ library built at Edge Impulse studio.
/* Generated by Edge Impulse
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/

#ifndef _EI_CLASSIFIER_MODEL_METADATA_H_
#define _EI_CLASSIFIER_MODEL_METADATA_H_

#include <stdint.h>

#define EI_CLASSIFIER_NONE                       255
#define EI_CLASSIFIER_UTENSOR                    1
#define EI_CLASSIFIER_TFLITE                     2
#define EI_CLASSIFIER_CUBEAI                     3
#define EI_CLASSIFIER_TFLITE_FULL                4
#define EI_CLASSIFIER_TENSAIFLOW                 5
#define EI_CLASSIFIER_TENSORRT                   6

#define EI_CLASSIFIER_SENSOR_UNKNOWN             -1
#define EI_CLASSIFIER_SENSOR_MICROPHONE          1
#define EI_CLASSIFIER_SENSOR_ACCELEROMETER       2
#define EI_CLASSIFIER_SENSOR_CAMERA              3

// These must match the enum values in TensorFlow Lite's "TfLiteType"
#define EI_CLASSIFIER_DATATYPE_FLOAT32           1
#define EI_CLASSIFIER_DATATYPE_INT8              9

#define EI_CLASSIFIER_PROJECT_ID                 8639
#define EI_CLASSIFIER_PROJECT_OWNER              "vincent wong"
#define EI_CLASSIFIER_PROJECT_NAME               "wesee-project-1"
#define EI_CLASSIFIER_PROJECT_DEPLOY_VERSION     2
#define EI_CLASSIFIER_NN_INPUT_FRAME_SIZE        33
#define EI_CLASSIFIER_RAW_SAMPLE_COUNT           17
#define EI_CLASSIFIER_RAW_SAMPLES_PER_FRAME      3
#define EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE       (EI_CLASSIFIER_RAW_SAMPLE_COUNT * EI_CLASSIFIER_RAW_SAMPLES_PER_FRAME)
#define EI_CLASSIFIER_INPUT_WIDTH                0
#define EI_CLASSIFIER_INPUT_HEIGHT               0
#define EI_CLASSIFIER_INTERVAL_MS                142.857142857143
#define EI_CLASSIFIER_LABEL_COUNT                3
#define EI_CLASSIFIER_HAS_ANOMALY                0
#define EI_CLASSIFIER_FREQUENCY                  7
#define EI_CLASSIFIER_USE_QUANTIZED_DSP_BLOCK    0


#define EI_CLASSIFIER_OBJECT_DETECTION           0


#define EI_CLASSIFIER_TFLITE_ARENA_SIZE          3673
#define EI_CLASSIFIER_TFLITE_INPUT_DATATYPE      EI_CLASSIFIER_DATATYPE_INT8
#define EI_CLASSIFIER_TFLITE_INPUT_QUANTIZED     1
#define EI_CLASSIFIER_TFLITE_INPUT_SCALE         0.20492251217365265
#define EI_CLASSIFIER_TFLITE_INPUT_ZEROPOINT     -128
#define EI_CLASSIFIER_TFLITE_OUTPUT_DATATYPE     EI_CLASSIFIER_DATATYPE_INT8
#define EI_CLASSIFIER_TFLITE_OUTPUT_QUANTIZED    1
#define EI_CLASSIFIER_TFLITE_OUTPUT_SCALE        0.00390625
#define EI_CLASSIFIER_TFLITE_OUTPUT_ZEROPOINT    -128
#define EI_CLASSIFIER_INFERENCING_ENGINE         EI_CLASSIFIER_TFLITE
#define EI_CLASSIFIER_COMPILED                   1
#define EI_CLASSIFIER_HAS_TFLITE_OPS_RESOLVER    1

#define EI_CLASSIFIER_SENSOR                     EI_CLASSIFIER_SENSOR_UNKNOWN
#ifndef EI_CLASSIFIER_SLICES_PER_MODEL_WINDOW
#define EI_CLASSIFIER_SLICES_PER_MODEL_WINDOW    4
#endif // EI_CLASSIFIER_SLICES_PER_MODEL_WINDOW
#define EI_CLASSIFIER_SLICE_SIZE                 (EI_CLASSIFIER_RAW_SAMPLE_COUNT / EI_CLASSIFIER_SLICES_PER_MODEL_WINDOW)

#if EI_CLASSIFIER_INFERENCING_ENGINE == EI_CLASSIFIER_TFLITE && EI_CLASSIFIER_USE_FULL_TFLITE == 1
#undef EI_CLASSIFIER_INFERENCING_ENGINE
#undef EI_CLASSIFIER_HAS_TFLITE_OPS_RESOLVER
#define EI_CLASSIFIER_INFERENCING_ENGINE          EI_CLASSIFIER_TFLITE_FULL
#define EI_CLASSIFIER_HAS_TFLITE_OPS_RESOLVER     0
#if EI_CLASSIFIER_COMPILED == 1
#error "Cannot use full TensorFlow Lite with EON"
#endif
#endif // EI_CLASSIFIER_INFERENCING_ENGINE == EI_CLASSIFIER_TFLITE && EI_CLASSIFIER_USE_FULL_TFLITE == 1

const char* ei_classifier_inferencing_categories[] = { "high", "low", "medium" };

typedef struct {
    uint16_t implementation_version;
    int axes;
    float scale_axes;
    bool average;
    bool minimum;
    bool maximum;
    bool rms;
    bool stdev;
    bool skewness;
    bool kurtosis;
} ei_dsp_config_flatten_t;

typedef struct {
    uint16_t implementation_version;
    int axes;
    const char * channels;
} ei_dsp_config_image_t;

typedef struct {
    uint16_t implementation_version;
    int axes;
    int num_cepstral;
    float frame_length;
    float frame_stride;
    int num_filters;
    int fft_length;
    int win_size;
    int low_frequency;
    int high_frequency;
    float pre_cof;
    int pre_shift;
} ei_dsp_config_mfcc_t;

typedef struct {
    uint16_t implementation_version;
    int axes;
    float frame_length;
    float frame_stride;
    int num_filters;
    int fft_length;
    int low_frequency;
    int high_frequency;
    int win_size;
} ei_dsp_config_mfe_t;

typedef struct {
    uint16_t implementation_version;
    int axes;
    float scale_axes;
} ei_dsp_config_raw_t;

typedef struct {
    uint16_t implementation_version;
    int axes;
    float scale_axes;
    const char * filter_type;
    float filter_cutoff;
    int filter_order;
    int fft_length;
    int spectral_peaks_count;
    float spectral_peaks_threshold;
    const char * spectral_power_edges;
} ei_dsp_config_spectral_analysis_t;

typedef struct {
    uint16_t implementation_version;
    int axes;
    float frame_length;
    float frame_stride;
    int fft_length;
    bool show_axes;
} ei_dsp_config_spectrogram_t;

typedef struct {
    uint16_t implementation_version;
    int axes;
    float frame_length;
    float frame_stride;
    int num_filters;
    int fft_length;
    int low_frequency;
    int high_frequency;
    float pre_cof;
    bool invert_features;
} ei_dsp_config_audio_syntiant_t;

uint8_t ei_dsp_config_3_axes[] = { 0, 1, 2 };
const uint32_t ei_dsp_config_3_axes_size = 3;
ei_dsp_config_spectral_analysis_t ei_dsp_config_3 = {
    1,
    3,
    1.00000f,
    "low",
    3.00000f,
    6,
    128,
    3,
    0.10000f,
    "0.1, 0.5, 1.0, 2.0, 5.0"
};

#endif // _EI_CLASSIFIER_MODEL_METADATA_H_

ei_run_impulse.cpp

C/C++
Here shows only code fragment
#elif defined(EI_CLASSIFIER_SENSOR) && EI_CLASSIFIER_SENSOR == EI_CLASSIFIER_SENSOR_ADC
// ADC start

/* Private variables ------------------------------------------------------- */
static float acc_buf[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE];
static int acc_sample_count = 0;

static bool acc_data_callback(const void *sample_buf, uint32_t byteLength)
{
    float *buffer = (float *)sample_buf;
    for(int i = 0; i < (int)(byteLength / sizeof(float)); i++) {
        acc_buf[acc_sample_count + i] = buffer[i];
    }

    return true;
}

void run_nn(bool debug)
{
    char ble_printf[64] = {0};
    bool stop_inferencing = false;
    // summary of inferencing settings (from model_metadata.h)
    ei_printf("CLASSIFIER SENSOR (%d)\n", EI_CLASSIFIER_SENSOR);
    ei_printf("Inferencing settings:\n");
    ei_printf("\tInterval: ");
    ei_printf_float((float)EI_CLASSIFIER_INTERVAL_MS);
    ei_printf("ms.\n");
    ei_printf("\tFrame size: %d\n", EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE);
    ei_printf("\tSample length: ");
    ei_printf_float(1000.0f * static_cast<float>(EI_CLASSIFIER_RAW_SAMPLE_COUNT) /
                  (1000.0f / static_cast<float>(EI_CLASSIFIER_INTERVAL_MS)));
    ei_printf("ms.\n");
    ei_printf("\tNo. of classes: %d\n", sizeof(ei_classifier_inferencing_categories) /
                                            sizeof(ei_classifier_inferencing_categories[0]));

    ei_printf("Starting inferencing, press 'b' to break\n");

    ei_adc_sample_start(&acc_data_callback, EI_CLASSIFIER_INTERVAL_MS);

    while (stop_inferencing == false) {
        ei_printf("Starting inferencing in 2 seconds...\n");

        // instead of wait_ms, we'll wait on the signal, this allows threads to cancel us...
        if (ei_sleep(2000) != EI_IMPULSE_OK) {
            break;
        }

        if(ei_user_invoke_stop()) {
            ei_printf("Inferencing stopped by user\r\n");
            break;
        }

        if (stop_inferencing) {
            break;
        }

        ei_printf("Sampling...\n");

        /* Run sampler */
        acc_sample_count = 0;
        for(int i = 0; i < EI_CLASSIFIER_RAW_SAMPLE_COUNT; i++) {
            ei_adc_read_data();
            acc_sample_count += EI_CLASSIFIER_RAW_SAMPLES_PER_FRAME;
        }

        // Create a data structure to represent this window of data
        signal_t signal;
        int err = numpy::signal_from_buffer(acc_buf, EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE, &signal);
        if (err != 0) {
            ei_printf("ERR: signal_from_buffer failed (%d)\n", err); 
        }

        // run the impulse: DSP, neural network and the Anomaly algorithm
        ei_impulse_result_t result = { 0 };
        EI_IMPULSE_ERROR ei_error = run_classifier(&signal, &result, debug);
        if (ei_error != EI_IMPULSE_OK) {
            ei_printf("Failed to run impulse (%d)\n", ei_error);
            break;
        }

        // print the predictions
        ei_printf("Predictions (DSP: %d ms., Classification: %d ms., Anomaly: %d ms.): \n",
            result.timing.dsp, result.timing.classification, result.timing.anomaly);
        for (size_t ix = 0; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) {            
            ei_printf("    %s: \t", result.classification[ix].label);
            ei_printf_float(result.classification[ix].value);
            ei_printf("\r\n");
        }
#if EI_CLASSIFIER_HAS_ANOMALY == 1
        ei_printf("    anomaly score: ");
        ei_printf_float(result.anomaly);
        ei_printf("\r\n");        
#endif

    /*BLE PRINTF*/
        for (size_t ix = 0; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) {            
            sprintf(ble_printf, "%s: %f\n", result.classification[ix].label, result.classification[ix].value);
            ble_nus_send_data(ble_printf, strlen(ble_printf));
        }
#if EI_CLASSIFIER_HAS_ANOMALY == 1
        sprintf(ble_printf, "anomaly score: %f\n", result.anomaly);
        ble_nus_send_data(ble_printf, strlen(ble_printf));
#endif

        memset(ble_printf, 0x00, sizeof(ble_printf));
    /*END BLE PRINTF*/

        if(ei_user_invoke_stop() || ei_ble_user_invoke_stop()) {
            ei_printf("Inferencing stopped by user\r\n");
            ble_nus_send_data("Inferencing stopped by user\n", strlen("Inferencing stopped by user\n"));
            memset(ble_printf, 0x00, sizeof(ble_printf));
            break;
        }
    }
}

// ADC end

ei_adcsensor.h

C/C++
#ifndef EI_ADC_SENSOR
#define EI_ADC_SENSOR

/* Include ----------------------------------------------------------------- */
#include "ei_sampler.h"
#include <zephyr.h>
#include <device.h>
#include <devicetree.h>
#include <drivers/sensor.h>
#include "iis2dlpc_reg.h"

#define ADC_DEVICE_LABEL "ADC"
#define IIS2DLPC_ADDRESS    0x19

/** Number of axis used and sample data format */
typedef float sample_format_t;
#define N_AXIS_SAMPLED          3 
#define SIZEOF_N_AXIS_SAMPLED   (sizeof(sample_format_t) * N_AXIS_SAMPLED)


#if defined(CONFIG_BOARD_NRF5340DK_NRF5340_CPUAPP) ||  defined(CONFIG_BOARD_NRF5340DK_NRF5340_CPUAPPNS) || defined(CONFIG_BOARD_NRF9160DK_NRF9160NS) || defined(CONFIG_BOARD_NRF9160DK_NRF9160)

/*ADC definitions and includes*/
#include <hal/nrf_saadc.h>
#define ADC_DEVICE_NAME DT_LABEL(DT_INST(0, nordic_nrf_saadc))
#define ADC_RESOLUTION 10
#define ADC_GAIN ADC_GAIN_1_6
#define ADC_REFERENCE ADC_REF_INTERNAL
#define ADC_ACQUISITION_TIME ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 10)
#define ADC_1ST_CHANNEL_ID 0  
#define ADC_1ST_CHANNEL_INPUT NRF_SAADC_INPUT_AIN0
#define ADC_2ND_CHANNEL_ID 1  
#define ADC_2ND_CHANNEL_INPUT NRF_SAADC_INPUT_AIN1
#define ADC_3RD_CHANNEL_ID 2  
#define ADC_3RD_CHANNEL_INPUT NRF_SAADC_INPUT_AIN2

#else
#error "Choose supported board or add new board for the application"
#endif



/* Function prototypes ----------------------------------------------------- */
bool ei_adc_init(void);
void ei_adc_read_data(void);
bool ei_adc_sample_start(sampler_callback callback, float sample_interval_ms);
bool ei_adc_setup_data_sampling(void);
void ei_adc_read_data_one(void);

#endif

ei_adcsensor.cpp

C/C++
/* Include ----------------------------------------------------------------- */
#include <stdint.h>
#include <stdlib.h>

#include "ei_config_types.h"
#include "ei_adcsensor.h"
#include "ei_device_nordic_nrf52.h"
#include "sensor_aq.h"

#include <drivers/gpio.h>
#include <drivers/adc.h>

#include <drivers/i2c.h>


#include <zephyr.h>

/* Constant defines -------------------------------------------------------- */
#define CONVERT_G_TO_MS2    9.80665f

#define ACC_SAMPLE_TIME_MS  0.912f
#define FLASH_WRITE_TIME_MS 0.5036f

#define ACC_SAMPLE_TIME_US  255
#define FLASH_WRITE_TIME_US 543
#define CORRECTION_TIME_US  400

extern ei_config_t *ei_config_get_config();
extern EI_CONFIG_ERROR ei_config_set_sample_interval(float interval);

//stmdev_ctx_t dev_ctx;

sampler_callback  adc_cb_sampler;

//int16_t data_raw_acceleration[N_AXIS_SAMPLED];

uint32_t adc_sample_interval_real_us = 0;
static bool adc_init = false;


/* ADC start */

#define TIMER_INTERVAL_MSEC 200
//#define TIMER_INTERVAL_MSEC 200
#define BUFFER_SIZE 3

struct k_timer my_timer;
const struct device *adc_dev;

static struct adc_channel_cfg m_1st_channel_cfg = {
	.gain = ADC_GAIN,
	.reference = ADC_REFERENCE,
	.acquisition_time = ADC_ACQUISITION_TIME,
	.channel_id = ADC_1ST_CHANNEL_ID,
#if defined(CONFIG_ADC_CONFIGURABLE_INPUTS)
	.input_positive = ADC_1ST_CHANNEL_INPUT,
#endif
};

static uint8_t channel_ids[BUFFER_SIZE] = {
	ADC_1ST_CHANNEL_ID,
	ADC_2ND_CHANNEL_ID,
	ADC_3RD_CHANNEL_ID,
};

static int16_t m_sample_buffer[BUFFER_SIZE];
static float acceleration_g[BUFFER_SIZE];

static int32_t adc_vref;

static struct adc_sequence sequence = {
    .channels = BIT(ADC_1ST_CHANNEL_ID),
    .buffer = m_sample_buffer,
    .buffer_size = sizeof(m_sample_buffer),
    .resolution = ADC_RESOLUTION,
};

/* ADC end */



/**
 * @brief      Setup I2C config and accelerometer convert value
 *
 * @return     false if communinication error occured
 */
bool ei_adc_init(void)
{
    int err;

    //ADC0 setup
    adc_dev = device_get_binding(ADC_DEVICE_NAME);
	if (!adc_dev) {
        printk("device_get_binding ADC_0 (=%s) failed\n", ADC_DEVICE_NAME);
    } 
    
   	/*
	 * Configure channels individually prior to sampling
	 */
	for (uint8_t i = 0; i < BUFFER_SIZE; i++) {
		m_1st_channel_cfg.channel_id = channel_ids[i];
#ifdef CONFIG_ADC_NRFX_SAADC
		m_1st_channel_cfg.input_positive = SAADC_CH_PSELP_PSELP_AnalogInput0
					     + channel_ids[i];
#endif

		err = adc_channel_setup(adc_dev, &m_1st_channel_cfg);
        if (err) {
            printk("Error in adc setup: %d\n", err);
        }

		sequence.channels |= BIT(channel_ids[i]);
	}

	adc_vref = adc_ref_internal(adc_dev);

    #if defined(CONFIG_BOARD_NRF9160DK_NRF9160NS) ||  defined(CONFIG_BOARD_NRF5340DK_NRF5340_CPUAPPNS)
    NRF_SAADC_NS->TASKS_CALIBRATEOFFSET = 1;
    #elif defined(CONFIG_BOARD_NRF9160DK_NRF9160) || defined(CONFIG_BOARD_NRF5340DK_NRF5340_CPUAPP)
    NRF_SAADC->TASKS_CALIBRATEOFFSET = 1;
    #else
    #error "Choose supported board or add new board for the application"
    #endif

    ei_printf("Sensor " ADC_DEVICE_LABEL " init OK\n");
    adc_init = true;
    return true;
}

/**
 * @brief      Get data from sensor, convert and call callback to handle
 */
void ei_adc_read_data(void)
{
    int ret;

    if (adc_dev) {
        ret = adc_read(adc_dev, &sequence);
        if (ret) {
            printk("adc_read() failed with code %d\n", ret);
            return;
        }

        for (int i = 0; i < BUFFER_SIZE - 1; i++) {
                acceleration_g[i] = (float)m_sample_buffer[i];
        } 
    } else {  // send zero if no data
        acceleration_g[0] = 0.0f;
        acceleration_g[1] = 0.0f;
        acceleration_g[2] = 0.0f;
    }

    adc_cb_sampler((const void *)&acceleration_g[0], SIZEOF_N_AXIS_SAMPLED);
    k_usleep(adc_sample_interval_real_us);

}

/**
 * @brief      Setup timing and data handle callback function
 *
 * @param[in]  callsampler         Function to handle the sampled data
 * @param[in]  sample_interval_ms  The sample interval milliseconds
 *
 * @return     true
 */
bool ei_adc_sample_start(sampler_callback callsampler, float sample_interval_ms)
{
    adc_cb_sampler = callsampler;

    adc_sample_interval_real_us = uint32_t(sample_interval_ms * 1000);
    adc_sample_interval_real_us = adc_sample_interval_real_us - (FLASH_WRITE_TIME_US + ACC_SAMPLE_TIME_US + CORRECTION_TIME_US);

    ei_printf("adc_sample_interval_real_us = %d us\n", adc_sample_interval_real_us);

    EiDevice.set_state(eiStateSampling);
    
    return true;
}

/**
 * @brief      Setup payload header
 *
 * @return     true
 */
bool ei_adc_setup_data_sampling(void)
{
    // not use?
    return true;
}


/* Static functions -------------------------------------------------------- */

Credits

vincent wong

vincent wong

81 projects • 205 followers

Comments