Sai Yamanoor
Published © MIT

RP2040 based Pi-Day Bling

RP2040-based bling that changes its LED color when it detects one of three keywords: "Pi", "3.14", or "Irrational"

IntermediateFull instructions provided2 hours479

Things used in this project

Hardware components

RP2040
Raspberry Pi RP2040
×1
Adafruit WS2812B Nano
×1
LED, RGB
LED, RGB
×1
Custom PCB
Custom PCB
×1
M2.5 Spacer
×8
Machine Screw, M2.5
Machine Screw, M2.5
×8

Software apps and online services

Arduino IDE
Arduino IDE
Edge Impulse Studio
Edge Impulse Studio
Raspberry Pi Pico C SDK

Story

Read more

Schematics

Pi Badge Schematic

Pico Badge Schematic

Code

Arduino Code

C/C++
// If your target is limited in memory remove this macro to save 10K RAM
#define EIDSP_QUANTIZE_FILTERBANK   0

/*
 ** NOTE: If you run into TFLite arena allocation issue.
 **
 ** This may be due to may dynamic memory fragmentation.
 ** Try defining "-DEI_CLASSIFIER_ALLOCATION_STATIC" in boards.local.txt (create
 ** if it doesn't exist) and copy this file to
 ** `<ARDUINO_CORE_INSTALL_PATH>/arduino/hardware/<mbed_core>/<core_version>/`.
 **
 ** See
 ** (https://support.arduino.cc/hc/en-us/articles/360012076960-Where-are-the-installed-cores-located-)
 ** to find where Arduino installs cores on your machine.
 **
 ** If the problem persists then there's not enough memory for this model and application.
 */

/* Includes ---------------------------------------------------------------- */
#include <pi_day_audio_inferencing.h>
#include <PDM.h>
#include <Adafruit_NeoPixel.h>

#define PIN 21

/** Audio buffers, pointers and selectors */
typedef struct {
    int16_t *buffer;
    uint8_t buf_ready;
    uint32_t buf_count;
    uint32_t n_samples;
} inference_t;

static inference_t inference;
static signed short sampleBuffer[2048];
static bool debug_nn = false; // Set this to true to see e.g. features generated from the raw signal
static volatile bool record_ready = false;

Adafruit_NeoPixel strip = Adafruit_NeoPixel(12, PIN, NEO_GRB + NEO_KHZ800);
uint32_t colors[4] = {
  strip.Color(127, 0, 0),
  strip.Color(0, 127, 0),
  strip.Color(0, 0, 127),
  strip.Color(127, 127, 127)
};

uint32_t color = strip.Color(0, 0, 0);

/**
 * @brief      Arduino setup function
 */
 void setup1(){

  strip.begin();
  strip.setBrightness(50);
  strip.show(); // Initialize all pixels to 'off'
 }

 void loop1(){
    if(rp2040.fifo.available()){
      color = rp2040.fifo.pop();
    }
    colorWipe(color, 50); // Red
    colorWipe(strip.Color(0, 0, 0), 25); // Green
 }
void setup()
{
    // put your setup code here, to run once:
    Serial.begin(115200);
    // comment out the below line to cancel the wait for USB connection (needed for native USB)
    
    Serial.println("Edge Impulse Inferencing Demo");

    // summary of inferencing settings (from model_metadata.h)
    ei_printf("Inferencing settings:\n");
    ei_printf("\tInterval: ");
    ei_printf_float((float)EI_CLASSIFIER_INTERVAL_MS);
    ei_printf(" ms.\n");
    ei_printf("\tFrame size: %d\n", EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE);
    ei_printf("\tSample length: %d ms.\n", EI_CLASSIFIER_RAW_SAMPLE_COUNT / 16);
    ei_printf("\tNo. of classes: %d\n", sizeof(ei_classifier_inferencing_categories) / sizeof(ei_classifier_inferencing_categories[0]));

    if (microphone_inference_start(EI_CLASSIFIER_RAW_SAMPLE_COUNT) == false) {
        ei_printf("ERR: Could not allocate audio buffer (size %d), this could be due to the window length of your model\r\n", EI_CLASSIFIER_RAW_SAMPLE_COUNT);
        return;
    }
}

/**
 * @brief      Arduino main function. Runs the inferencing loop.
 */
void loop()
{
    ei_printf("Starting inferencing in 2 seconds...\n");

    delay(2000);

    ei_printf("Recording...\n");

    bool m = microphone_inference_record();
    if (!m) {
        ei_printf("ERR: Failed to record audio...\n");
        return;
    }

    ei_printf("Recording done\n");

    signal_t signal;
    signal.total_length = EI_CLASSIFIER_RAW_SAMPLE_COUNT;
    signal.get_data = &microphone_audio_signal_get_data;
    ei_impulse_result_t result = { 0 };

    EI_IMPULSE_ERROR r = run_classifier(&signal, &result, debug_nn);
    if (r != EI_IMPULSE_OK) {
        ei_printf("ERR: Failed to run classifier (%d)\n", r);
        return;
    }

    // print inference return code
    ei_printf("run_classifier returned: %d\r\n", r);
    print_inference_result(result);
}

// Fill the dots one after the other with a color
void colorWipe(uint32_t c, uint8_t wait) {
  for(uint16_t i=0; i<strip.numPixels(); i++) {
    strip.setPixelColor(i, c);
    strip.show();
    delay(wait);
  }
}


/**
 * @brief      PDM buffer full callback
 *             Copy audio data to app buffers
 */
static void pdm_data_ready_inference_callback(void)
{
    int bytesAvailable = PDM.available();

    // read into the sample buffer
    int bytesRead = PDM.read((char *)&sampleBuffer[0], bytesAvailable);

    if ((inference.buf_ready == 0) && (record_ready == true)) {

        for(int i = 0; i < bytesRead>>1; i++) {
            inference.buffer[inference.buf_count++] = sampleBuffer[i];

            if(inference.buf_count >= inference.n_samples) {
                inference.buf_count = 0;
                inference.buf_ready = 1;
                break;
            }
        }
    }
}

/**
 * @brief      Init inferencing struct and setup/start PDM
 *
 * @param[in]  n_samples  The n samples
 *
 * @return     { description_of_the_return_value }
 */
static bool microphone_inference_start(uint32_t n_samples)
{
    inference.buffer = (int16_t *)malloc(n_samples * sizeof(int16_t));

    if(inference.buffer == NULL) {
        return false;
    }

    inference.buf_count  = 0;
    inference.n_samples  = n_samples;
    inference.buf_ready  = 0;

    // configure the data receive callback
    PDM.onReceive(pdm_data_ready_inference_callback);

    PDM.setBufferSize(2048);
    delay(250);

    // initialize PDM with:
    // - one channel (mono mode)
    if (!PDM.begin(1, EI_CLASSIFIER_FREQUENCY)) {
        ei_printf("ERR: Failed to start PDM!");
        microphone_inference_end();
        return false;
    }

    // optionally set the gain, defaults to 24
    // Note: values >=52 not supported
    PDM.setGain(40);

    return true;
}

/**
 * @brief      Wait on new data
 *
 * @return     True when finished
 */
static bool microphone_inference_record(void)
{
    bool ret = true;

    record_ready = true;
    while (inference.buf_ready == 0) {
        delay(10);
    }

    inference.buf_ready = 0;
    record_ready = false;

    return ret;
}

/**
 * Get raw audio signal data
 */
static int microphone_audio_signal_get_data(size_t offset, size_t length, float *out_ptr)
{
    numpy::int16_to_float(&inference.buffer[offset], out_ptr, length);

    return 0;
}

/**
 * @brief      Stop PDM and release buffers
 */
static void microphone_inference_end(void)
{
    PDM.end();
    ei_free(inference.buffer);
}

void print_inference_result(ei_impulse_result_t result) {

    // Print how long it took to perform inference
    ei_printf("Timing: DSP %d ms, inference %d ms, anomaly %d ms\r\n",
            result.timing.dsp,
            result.timing.classification,
            result.timing.anomaly);

    ei_printf("Predictions:\r\n");
    for (uint16_t i = 0; i < EI_CLASSIFIER_LABEL_COUNT; i++) {
        ei_printf("  %s: ", ei_classifier_inferencing_categories[i]);
        ei_printf("%.5f\r\n", result.classification[i].value);
        if(i != 3 && result.classification[i].value > 0.90){
           rp2040.fifo.push(colors[i]);
        }
    }


    // Print anomaly result (if it exists)
#if EI_CLASSIFIER_HAS_ANOMALY == 1
    ei_printf("Anomaly prediction: %.3f\r\n", result.anomaly);
#endif

}

#if !defined(EI_CLASSIFIER_SENSOR) || EI_CLASSIFIER_SENSOR != EI_CLASSIFIER_SENSOR_MICROPHONE
#error "Invalid model for current sensor."
#endif

Github repository

Credits

Sai Yamanoor

Sai Yamanoor

11 projects • 10 followers
I am a hardware engineer. I like to design PCBs and build exciting gadgets.

Comments