Muhammad Asawal
Published

Safe Box

Safe box is a UV-C light enabled lock box to disinfect packages. And wireless control via mobile provides contact-less experience.

IntermediateProtip24 hours782
Safe Box

Things used in this project

Hardware components

SG90 Micro-servo motor
SG90 Micro-servo motor
×2
nRF52 Development Kit
Nordic Semiconductor nRF52 Development Kit
×1
Solderless Breadboard Full Size
Solderless Breadboard Full Size
×1
Rotary potentiometer (generic)
Rotary potentiometer (generic)
×1
General Purpose Transistor NPN
General Purpose Transistor NPN
×1
UV LED 5mm
×20

Software apps and online services

Nordic Semiconductor nRFgo Studio

Hand tools and fabrication machines

Wire Stripper & Cutter, 18-10 AWG / 0.75-4mm² Capacity Wires
Wire Stripper & Cutter, 18-10 AWG / 0.75-4mm² Capacity Wires
Soldering iron (generic)
Soldering iron (generic)

Story

Read more

Code

SafeBoxNRF.txt

C/C++
/**
 * Copyright (c) 2014 - 2018, Nordic Semiconductor ASA
 * 
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 * 
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 * 
 * 2. Redistributions in binary form, except as embedded into a Nordic
 *    Semiconductor ASA integrated circuit in a product or a software update for
 *    such product, must reproduce the above copyright notice, this list of
 *    conditions and the following disclaimer in the documentation and/or other
 *    materials provided with the distribution.
 * 
 * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
 *    contributors may be used to endorse or promote products derived from this
 *    software without specific prior written permission.
 * 
 * 4. This software, with or without modification, must only be used with a
 *    Nordic Semiconductor ASA integrated circuit.
 * 
 * 5. Any software provided in binary form under this license must not be reverse
 *    engineered, decompiled, modified and/or disassembled.
 * 
 * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 * 
 */
/** @file
 *
 * @defgroup ble_sdk_uart_over_ble_main main.c
 * @{
 * @ingroup  ble_sdk_app_nus_eval
 * @brief    UART over BLE application main file.
 *
 * This file contains the source code for a sample application that uses the Nordic UART service.
 * This application uses the @ref srvlib_conn_params module.
 */
#include <stdint.h>

#include <string.h>

#include "nordic_common.h"

#include "nrf.h"

#include "ble_hci.h"

#include "ble_advdata.h"

#include "ble_advertising.h"

#include "ble_conn_params.h"

#include "nrf_sdh.h"

#include "nrf_sdh_soc.h"

#include "nrf_sdh_ble.h"

#include "nrf_ble_gatt.h"

#include "nrf_ble_qwr.h"

#include "app_timer.h"

#include "ble_nus.h"

#include "app_uart.h"

#include "app_util_platform.h"

#include "bsp_btn_ble.h"

#include "nrf_pwr_mgmt.h"

#include "nrf_delay.h"

#include "app_pwm.h"

#include "nrf_gpio.h"

#if defined(UART_PRESENT)#include "nrf_uart.h"

#endif
#if defined(UARTE_PRESENT)#include "nrf_uarte.h"

#endif

#include "nrf_log.h"

#include "nrf_log_ctrl.h"

#include "nrf_log_default_backends.h"

#define APP_BLE_CONN_CFG_TAG 1 /**< A tag identifying the SoftDevice BLE configuration. */

#define DEVICE_NAME "Safe Box" /**< Name of device. Will be included in the advertising data. */
#define NUS_SERVICE_UUID_TYPE BLE_UUID_TYPE_VENDOR_BEGIN /**< UUID type for the Nordic UART Service (vendor specific). */

#define APP_BLE_OBSERVER_PRIO 3 /**< Application's BLE observer priority. You shouldn't need to modify this value. */

#define APP_ADV_INTERVAL 64 /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */

#define APP_ADV_DURATION 18000 /**< The advertising duration (180 seconds) in units of 10 milliseconds. */

#define MIN_CONN_INTERVAL MSEC_TO_UNITS(20, UNIT_1_25_MS) /**< Minimum acceptable connection interval (20 ms), Connection interval uses 1.25 ms units. */
#define MAX_CONN_INTERVAL MSEC_TO_UNITS(75, UNIT_1_25_MS) /**< Maximum acceptable connection interval (75 ms), Connection interval uses 1.25 ms units. */
#define SLAVE_LATENCY 0 /**< Slave latency. */
#define CONN_SUP_TIMEOUT MSEC_TO_UNITS(4000, UNIT_10_MS) /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */
#define FIRST_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(5000) /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */
#define NEXT_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(30000) /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */
#define MAX_CONN_PARAMS_UPDATE_COUNT 3 /**< Number of attempts before giving up the connection parameter negotiation. */

#define DEAD_BEEF 0xDEADBEEF /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */

#define UART_TX_BUF_SIZE 256 /**< UART TX buffer size. */
#define UART_RX_BUF_SIZE 256 /**< UART RX buffer size. */


BLE_NUS_DEF(m_nus, NRF_SDH_BLE_TOTAL_LINK_COUNT); /**< BLE NUS service instance. */
NRF_BLE_GATT_DEF(m_gatt); /**< GATT module instance. */
NRF_BLE_QWR_DEF(m_qwr); /**< Context for the Queued Write module.*/
BLE_ADVERTISING_DEF(m_advertising); /**< Advertising module instance. */

int flag = 0;


void bleBLE_onDisconnect(void);
void sendstring(char * send_array);
void bleBLE_dataReceive(char * data);

uint8_t servo_pos_max = 10;
uint8_t servo_pos_min = 5;

APP_PWM_INSTANCE(PWM1, 1); // Create the instance "PWM1" using TIMER1.
APP_PWM_INSTANCE(PWM2, 2); // Create the instance "PWM1" using TIMER1.

uint8_t LED_PIN = 4;


static uint16_t m_conn_handle = BLE_CONN_HANDLE_INVALID; /**< Handle of the current connection. */
static uint16_t m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - 3; /**< Maximum length of data (in bytes) that can be transmitted to the peer by the Nordic UART service module. */
static ble_uuid_t m_adv_uuids[] = /**< Universally unique service identifier. */ {
    {
        BLE_UUID_NUS_SERVICE,
        NUS_SERVICE_UUID_TYPE
    }
};

void assert_nrf_callback(uint16_t line_num,
    const uint8_t * p_file_name) {
    app_error_handler(DEAD_BEEF, line_num, p_file_name);
}


static void timers_init(void) {
    ret_code_t err_code = app_timer_init();
    APP_ERROR_CHECK(err_code);
}

static void gap_params_init(void) {
    uint32_t err_code;
    ble_gap_conn_params_t gap_conn_params;
    ble_gap_conn_sec_mode_t sec_mode;

    BLE_GAP_CONN_SEC_MODE_SET_OPEN( & sec_mode);

    err_code = sd_ble_gap_device_name_set( & sec_mode,
        (const uint8_t * ) DEVICE_NAME,
        strlen(DEVICE_NAME));
    APP_ERROR_CHECK(err_code);

    memset( & gap_conn_params, 0, sizeof(gap_conn_params));

    gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL;
    gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL;
    gap_conn_params.slave_latency = SLAVE_LATENCY;
    gap_conn_params.conn_sup_timeout = CONN_SUP_TIMEOUT;

    err_code = sd_ble_gap_ppcp_set( & gap_conn_params);
    APP_ERROR_CHECK(err_code);
}

static void nrf_qwr_error_handler(uint32_t nrf_error) {
    APP_ERROR_HANDLER(nrf_error);
}

static void nus_data_handler(ble_nus_evt_t * p_evt) {
    uint8_t * p_data;
    if (p_evt - > type == BLE_NUS_EVT_RX_DATA) {
        uint32_t err_code;
        for (uint32_t i = 0; i < p_evt - > params.rx_data.length; i++) {
            while (app_uart_put(p_evt - > params.rx_data.p_data[i]) != NRF_SUCCESS);
        }
        while (app_uart_put('\n') != NRF_SUCCESS);

        char str[50];
        for (uint32_t i = 0; i < p_evt - > params.rx_data.length; i++) {

            sprintf( & str[i], "%c", p_evt - > params.rx_data.p_data[i]);

        }
        bleBLE_dataReceive(str);

    }

}

static void services_init(void) {
    uint32_t err_code;
    ble_nus_init_t nus_init;
    nrf_ble_qwr_init_t qwr_init = {
        0
    };

    // Initialize Queued Write Module.
    qwr_init.error_handler = nrf_qwr_error_handler;

    err_code = nrf_ble_qwr_init( & m_qwr, & qwr_init);
    APP_ERROR_CHECK(err_code);

    // Initialize NUS.
    memset( & nus_init, 0, sizeof(nus_init));

    nus_init.data_handler = nus_data_handler;

    err_code = ble_nus_init( & m_nus, & nus_init);
    APP_ERROR_CHECK(err_code);
}

static void on_conn_params_evt(ble_conn_params_evt_t * p_evt) {
    uint32_t err_code;

    if (p_evt - > evt_type == BLE_CONN_PARAMS_EVT_FAILED) {
        err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE);
        APP_ERROR_CHECK(err_code);
    }
}

static void conn_params_error_handler(uint32_t nrf_error) {
    APP_ERROR_HANDLER(nrf_error);
}

static void conn_params_init(void) {
    uint32_t err_code;
    ble_conn_params_init_t cp_init;

    memset( & cp_init, 0, sizeof(cp_init));

    cp_init.p_conn_params = NULL;
    cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY;
    cp_init.next_conn_params_update_delay = NEXT_CONN_PARAMS_UPDATE_DELAY;
    cp_init.max_conn_params_update_count = MAX_CONN_PARAMS_UPDATE_COUNT;
    cp_init.start_on_notify_cccd_handle = BLE_GATT_HANDLE_INVALID;
    cp_init.disconnect_on_fail = false;
    cp_init.evt_handler = on_conn_params_evt;
    cp_init.error_handler = conn_params_error_handler;

    err_code = ble_conn_params_init( & cp_init);
    APP_ERROR_CHECK(err_code);
}


static void sleep_mode_enter(void) {
    uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE);
    APP_ERROR_CHECK(err_code);

    // Prepare wakeup buttons.
    err_code = bsp_btn_ble_sleep_mode_prepare();
    APP_ERROR_CHECK(err_code);

    // Go to system-off mode (this function will not return; wakeup will cause a reset).
    err_code = sd_power_system_off();
    APP_ERROR_CHECK(err_code);
}


static void on_adv_evt(ble_adv_evt_t ble_adv_evt) {
    uint32_t err_code;

    switch (ble_adv_evt) {
        case BLE_ADV_EVT_FAST:
            err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING);
            APP_ERROR_CHECK(err_code);
            break;
        case BLE_ADV_EVT_IDLE:
            sleep_mode_enter();
            break;
        default:
            break;
    }
}


static void ble_evt_handler(ble_evt_t
    const * p_ble_evt, void * p_context) {
    uint32_t err_code;

    switch (p_ble_evt - > header.evt_id) {
        case BLE_GAP_EVT_CONNECTED:
            err_code = bsp_indication_set(BSP_INDICATE_CONNECTED);
            APP_ERROR_CHECK(err_code);
            m_conn_handle = p_ble_evt - > evt.gap_evt.conn_handle;
            err_code = nrf_ble_qwr_conn_handle_assign( & m_qwr, m_conn_handle);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_GAP_EVT_DISCONNECTED:
            m_conn_handle = BLE_CONN_HANDLE_INVALID;
            break;

        case BLE_GAP_EVT_PHY_UPDATE_REQUEST: {
            ble_gap_phys_t
            const phys = {
                .rx_phys = BLE_GAP_PHY_AUTO,
                .tx_phys = BLE_GAP_PHY_AUTO,
            };
            err_code = sd_ble_gap_phy_update(p_ble_evt - > evt.gap_evt.conn_handle, & phys);
            APP_ERROR_CHECK(err_code);
        }
        break;

    case BLE_GAP_EVT_SEC_PARAMS_REQUEST:
        // Pairing not supported
        err_code = sd_ble_gap_sec_params_reply(m_conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL);
        APP_ERROR_CHECK(err_code);
        break;

    case BLE_GATTS_EVT_SYS_ATTR_MISSING:
        // No system attributes have been stored.
        err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0);
        APP_ERROR_CHECK(err_code);
        break;

    case BLE_GATTC_EVT_TIMEOUT:
        // Disconnect on GATT Client timeout event.
        err_code = sd_ble_gap_disconnect(p_ble_evt - > evt.gattc_evt.conn_handle,
            BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
        APP_ERROR_CHECK(err_code);
        break;

    case BLE_GATTS_EVT_TIMEOUT:
        // Disconnect on GATT Server timeout event.
        err_code = sd_ble_gap_disconnect(p_ble_evt - > evt.gatts_evt.conn_handle,
            BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
        APP_ERROR_CHECK(err_code);
        break;

    default:
        // No implementation needed.
        break;
    }
}

static void ble_stack_init(void) {
    ret_code_t err_code;

    err_code = nrf_sdh_enable_request();
    APP_ERROR_CHECK(err_code);

    // Configure the BLE stack using the default settings.
    // Fetch the start address of the application RAM.
    uint32_t ram_start = 0;
    err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, & ram_start);
    APP_ERROR_CHECK(err_code);

    // Enable BLE stack.
    err_code = nrf_sdh_ble_enable( & ram_start);
    APP_ERROR_CHECK(err_code);

    // Register a handler for BLE events.
    NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL);
}

void gatt_evt_handler(nrf_ble_gatt_t * p_gatt, nrf_ble_gatt_evt_t
    const * p_evt) {
    if ((m_conn_handle == p_evt - > conn_handle) && (p_evt - > evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED)) {
        m_ble_nus_max_data_len = p_evt - > params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH;
        // NRF_LOG_INFO("Data len is set to 0x%X(%d)", m_ble_nus_max_data_len, m_ble_nus_max_data_len);
    }
    NRF_LOG_DEBUG("ATT MTU exchange completed. central 0x%x peripheral 0x%x",
        p_gatt - > att_mtu_desired_central,
        p_gatt - > att_mtu_desired_periph);
}


void gatt_init(void) {
    ret_code_t err_code;

    err_code = nrf_ble_gatt_init( & m_gatt, gatt_evt_handler);
    APP_ERROR_CHECK(err_code);

    err_code = nrf_ble_gatt_att_mtu_periph_set( & m_gatt, NRF_SDH_BLE_GATT_MAX_MTU_SIZE);
    APP_ERROR_CHECK(err_code);
}

void uart_event_handle(app_uart_evt_t * p_event) {
    static uint8_t data_array[BLE_NUS_MAX_DATA_LEN];
    static uint8_t index = 0;
    uint32_t err_code;

    switch (p_event - > evt_type) {
        case APP_UART_DATA_READY:
            UNUSED_VARIABLE(app_uart_get( & data_array[index]));
            index++;

            if ((data_array[index - 1] == '\n') || (index >= (m_ble_nus_max_data_len))) {
                NRF_LOG_HEXDUMP_DEBUG(data_array, index);

                do {
                    uint16_t length = (uint16_t) index;
                    err_code = ble_nus_data_send( & m_nus, data_array, & length, m_conn_handle);
                    if ((err_code != NRF_ERROR_INVALID_STATE) && (err_code != NRF_ERROR_BUSY) &&
                        (err_code != NRF_ERROR_NOT_FOUND)) {
                        APP_ERROR_CHECK(err_code);
                    }
                } while (err_code == NRF_ERROR_BUSY);

                index = 0;
            }
            break;

        case APP_UART_COMMUNICATION_ERROR:
            APP_ERROR_HANDLER(p_event - > data.error_communication);
            break;

        case APP_UART_FIFO_ERROR:
            APP_ERROR_HANDLER(p_event - > data.error_code);
            break;

        default:
            break;
    }
}

static void uart_init(void) {
    uint32_t err_code;
    app_uart_comm_params_t
    const comm_params = {
        .rx_pin_no = RX_PIN_NUMBER,
        .tx_pin_no = TX_PIN_NUMBER,
        .rts_pin_no = RTS_PIN_NUMBER,
        .cts_pin_no = CTS_PIN_NUMBER,
        .flow_control = APP_UART_FLOW_CONTROL_DISABLED,
        .use_parity = false,
        #if defined(UART_PRESENT)
        .baud_rate = NRF_UART_BAUDRATE_115200
        #else
        .baud_rate = NRF_UARTE_BAUDRATE_115200
        #endif
    };

    APP_UART_FIFO_INIT( & comm_params,
        UART_RX_BUF_SIZE,
        UART_TX_BUF_SIZE,
        uart_event_handle,
        APP_IRQ_PRIORITY_LOWEST,
        err_code);
    APP_ERROR_CHECK(err_code);
}

static void advertising_init(void) {
    uint32_t err_code;
    ble_advertising_init_t init;

    memset( & init, 0, sizeof(init));

    init.advdata.name_type = BLE_ADVDATA_FULL_NAME;
    init.advdata.include_appearance = false;
    init.advdata.flags = BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE;

    init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]);
    init.srdata.uuids_complete.p_uuids = m_adv_uuids;

    init.config.ble_adv_fast_enabled = true;
    init.config.ble_adv_fast_interval = APP_ADV_INTERVAL;
    init.config.ble_adv_fast_timeout = APP_ADV_DURATION;
    init.evt_handler = on_adv_evt;

    err_code = ble_advertising_init( & m_advertising, & init);
    APP_ERROR_CHECK(err_code);

    ble_advertising_conn_cfg_tag_set( & m_advertising, APP_BLE_CONN_CFG_TAG);
}

static void log_init(void) {
    ret_code_t err_code = NRF_LOG_INIT(NULL);
    APP_ERROR_CHECK(err_code);

    NRF_LOG_DEFAULT_BACKENDS_INIT();
}

static void power_management_init(void) {
    ret_code_t err_code;
    err_code = nrf_pwr_mgmt_init();
    APP_ERROR_CHECK(err_code);
}

static void idle_state_handle(void) {
    UNUSED_RETURN_VALUE(NRF_LOG_PROCESS());
    nrf_pwr_mgmt_run();
}


/**@brief Function for starting advertising.
 */
static void advertising_start(void) {
    uint32_t err_code = ble_advertising_start( & m_advertising, BLE_ADV_MODE_FAST);
    APP_ERROR_CHECK(err_code);
}


/**@brief Application main function.
 */
int main(void) {
    bool erase_bonds;

    // Initialize.
    uart_init();
    log_init();

    ret_code_t err_code;
    uint8_t SERVO_PIN = 2;
    uint8_t SERVO_PIN2 = 3;
    /* 1-channel PWM, 50Hz, output on DK LED pins, 20ms period */
    app_pwm_config_t pwm1_cfg = APP_PWM_DEFAULT_CONFIG_1CH(20000 L, SERVO_PIN);
    app_pwm_config_t pwm2_cfg = APP_PWM_DEFAULT_CONFIG_1CH(20000 L, SERVO_PIN2);
    /* Switch the polarity of the first channel. */
    pwm1_cfg.pin_polarity[0] = APP_PWM_POLARITY_ACTIVE_HIGH;
    pwm2_cfg.pin_polarity[0] = APP_PWM_POLARITY_ACTIVE_HIGH;

    /* Initialize and enable PWM. */
    err_code = app_pwm_init( & PWM1, & pwm1_cfg, NULL);
    APP_ERROR_CHECK(err_code);
    err_code = app_pwm_init( & PWM2, & pwm2_cfg, NULL);
    APP_ERROR_CHECK(err_code);
    app_pwm_enable( & PWM1);
    app_pwm_enable( & PWM2);
    nrf_gpio_cfg_output(LED_PIN); // Configure pin as output
    nrf_gpio_pin_clear(LED_PIN);
    timers_init();
    power_management_init();
    ble_stack_init();
    gap_params_init();
    gatt_init();
    services_init();
    advertising_init();
    conn_params_init();
    advertising_start();
    for (;;) {
        if (flag == 1) {
            while (app_pwm_channel_duty_set( & PWM1, 0, servo_pos_min) == NRF_ERROR_BUSY); //door closed
            nrf_delay_ms(3000);
            while (app_pwm_channel_duty_set( & PWM2, 0, servo_pos_min) == NRF_ERROR_BUSY); //locked
            nrf_delay_ms(3000);
            nrf_gpio_pin_set(LED_PIN); // Set high

        } else if (flag == 2) {
            nrf_gpio_pin_clear(LED_PIN);
            nrf_delay_ms(3000);
            while (app_pwm_channel_duty_set( & PWM2, 0, servo_pos_max) == NRF_ERROR_BUSY); //unlock
            nrf_delay_ms(3000);
            while (app_pwm_channel_duty_set( & PWM1, 0, servo_pos_max) == NRF_ERROR_BUSY);

        }
        idle_state_handle();
    }
}

void bleBLE_dataReceive(char * val) {
    if (val[0] == 'c') {

        flag = 1;
    } 
    else if (val[0] == 'o') {

        flag = 2;
    }

}

Credits

Muhammad Asawal

Muhammad Asawal

1 project • 0 followers

Comments