/**
* Copyright (c) 2014 - 2018, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/** @file
*
* @defgroup ble_sdk_uart_over_ble_main main.c
* @{
* @ingroup ble_sdk_app_nus_eval
* @brief UART over BLE application main file.
*
* This file contains the source code for a sample application that uses the Nordic UART service.
* This application uses the @ref srvlib_conn_params module.
*/
#include <stdint.h>
#include <string.h>
#include "nordic_common.h"
#include "nrf.h"
#include "ble_hci.h"
#include "ble_advdata.h"
#include "ble_advertising.h"
#include "ble_conn_params.h"
#include "nrf_sdh.h"
#include "nrf_sdh_soc.h"
#include "nrf_sdh_ble.h"
#include "nrf_ble_gatt.h"
#include "nrf_ble_qwr.h"
#include "app_timer.h"
#include "ble_nus.h"
#include "app_uart.h"
#include "app_util_platform.h"
#include "bsp_btn_ble.h"
#include "nrf_pwr_mgmt.h"
#include "nrf_delay.h"
#include "app_pwm.h"
#include "nrf_gpio.h"
#if defined(UART_PRESENT)#include "nrf_uart.h"
#endif
#if defined(UARTE_PRESENT)#include "nrf_uarte.h"
#endif
#include "nrf_log.h"
#include "nrf_log_ctrl.h"
#include "nrf_log_default_backends.h"
#define APP_BLE_CONN_CFG_TAG 1 /**< A tag identifying the SoftDevice BLE configuration. */
#define DEVICE_NAME "Safe Box" /**< Name of device. Will be included in the advertising data. */
#define NUS_SERVICE_UUID_TYPE BLE_UUID_TYPE_VENDOR_BEGIN /**< UUID type for the Nordic UART Service (vendor specific). */
#define APP_BLE_OBSERVER_PRIO 3 /**< Application's BLE observer priority. You shouldn't need to modify this value. */
#define APP_ADV_INTERVAL 64 /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */
#define APP_ADV_DURATION 18000 /**< The advertising duration (180 seconds) in units of 10 milliseconds. */
#define MIN_CONN_INTERVAL MSEC_TO_UNITS(20, UNIT_1_25_MS) /**< Minimum acceptable connection interval (20 ms), Connection interval uses 1.25 ms units. */
#define MAX_CONN_INTERVAL MSEC_TO_UNITS(75, UNIT_1_25_MS) /**< Maximum acceptable connection interval (75 ms), Connection interval uses 1.25 ms units. */
#define SLAVE_LATENCY 0 /**< Slave latency. */
#define CONN_SUP_TIMEOUT MSEC_TO_UNITS(4000, UNIT_10_MS) /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */
#define FIRST_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(5000) /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */
#define NEXT_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(30000) /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */
#define MAX_CONN_PARAMS_UPDATE_COUNT 3 /**< Number of attempts before giving up the connection parameter negotiation. */
#define DEAD_BEEF 0xDEADBEEF /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */
#define UART_TX_BUF_SIZE 256 /**< UART TX buffer size. */
#define UART_RX_BUF_SIZE 256 /**< UART RX buffer size. */
BLE_NUS_DEF(m_nus, NRF_SDH_BLE_TOTAL_LINK_COUNT); /**< BLE NUS service instance. */
NRF_BLE_GATT_DEF(m_gatt); /**< GATT module instance. */
NRF_BLE_QWR_DEF(m_qwr); /**< Context for the Queued Write module.*/
BLE_ADVERTISING_DEF(m_advertising); /**< Advertising module instance. */
int flag = 0;
void bleBLE_onDisconnect(void);
void sendstring(char * send_array);
void bleBLE_dataReceive(char * data);
uint8_t servo_pos_max = 10;
uint8_t servo_pos_min = 5;
APP_PWM_INSTANCE(PWM1, 1); // Create the instance "PWM1" using TIMER1.
APP_PWM_INSTANCE(PWM2, 2); // Create the instance "PWM1" using TIMER1.
uint8_t LED_PIN = 4;
static uint16_t m_conn_handle = BLE_CONN_HANDLE_INVALID; /**< Handle of the current connection. */
static uint16_t m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - 3; /**< Maximum length of data (in bytes) that can be transmitted to the peer by the Nordic UART service module. */
static ble_uuid_t m_adv_uuids[] = /**< Universally unique service identifier. */ {
{
BLE_UUID_NUS_SERVICE,
NUS_SERVICE_UUID_TYPE
}
};
void assert_nrf_callback(uint16_t line_num,
const uint8_t * p_file_name) {
app_error_handler(DEAD_BEEF, line_num, p_file_name);
}
static void timers_init(void) {
ret_code_t err_code = app_timer_init();
APP_ERROR_CHECK(err_code);
}
static void gap_params_init(void) {
uint32_t err_code;
ble_gap_conn_params_t gap_conn_params;
ble_gap_conn_sec_mode_t sec_mode;
BLE_GAP_CONN_SEC_MODE_SET_OPEN( & sec_mode);
err_code = sd_ble_gap_device_name_set( & sec_mode,
(const uint8_t * ) DEVICE_NAME,
strlen(DEVICE_NAME));
APP_ERROR_CHECK(err_code);
memset( & gap_conn_params, 0, sizeof(gap_conn_params));
gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL;
gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL;
gap_conn_params.slave_latency = SLAVE_LATENCY;
gap_conn_params.conn_sup_timeout = CONN_SUP_TIMEOUT;
err_code = sd_ble_gap_ppcp_set( & gap_conn_params);
APP_ERROR_CHECK(err_code);
}
static void nrf_qwr_error_handler(uint32_t nrf_error) {
APP_ERROR_HANDLER(nrf_error);
}
static void nus_data_handler(ble_nus_evt_t * p_evt) {
uint8_t * p_data;
if (p_evt - > type == BLE_NUS_EVT_RX_DATA) {
uint32_t err_code;
for (uint32_t i = 0; i < p_evt - > params.rx_data.length; i++) {
while (app_uart_put(p_evt - > params.rx_data.p_data[i]) != NRF_SUCCESS);
}
while (app_uart_put('\n') != NRF_SUCCESS);
char str[50];
for (uint32_t i = 0; i < p_evt - > params.rx_data.length; i++) {
sprintf( & str[i], "%c", p_evt - > params.rx_data.p_data[i]);
}
bleBLE_dataReceive(str);
}
}
static void services_init(void) {
uint32_t err_code;
ble_nus_init_t nus_init;
nrf_ble_qwr_init_t qwr_init = {
0
};
// Initialize Queued Write Module.
qwr_init.error_handler = nrf_qwr_error_handler;
err_code = nrf_ble_qwr_init( & m_qwr, & qwr_init);
APP_ERROR_CHECK(err_code);
// Initialize NUS.
memset( & nus_init, 0, sizeof(nus_init));
nus_init.data_handler = nus_data_handler;
err_code = ble_nus_init( & m_nus, & nus_init);
APP_ERROR_CHECK(err_code);
}
static void on_conn_params_evt(ble_conn_params_evt_t * p_evt) {
uint32_t err_code;
if (p_evt - > evt_type == BLE_CONN_PARAMS_EVT_FAILED) {
err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE);
APP_ERROR_CHECK(err_code);
}
}
static void conn_params_error_handler(uint32_t nrf_error) {
APP_ERROR_HANDLER(nrf_error);
}
static void conn_params_init(void) {
uint32_t err_code;
ble_conn_params_init_t cp_init;
memset( & cp_init, 0, sizeof(cp_init));
cp_init.p_conn_params = NULL;
cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY;
cp_init.next_conn_params_update_delay = NEXT_CONN_PARAMS_UPDATE_DELAY;
cp_init.max_conn_params_update_count = MAX_CONN_PARAMS_UPDATE_COUNT;
cp_init.start_on_notify_cccd_handle = BLE_GATT_HANDLE_INVALID;
cp_init.disconnect_on_fail = false;
cp_init.evt_handler = on_conn_params_evt;
cp_init.error_handler = conn_params_error_handler;
err_code = ble_conn_params_init( & cp_init);
APP_ERROR_CHECK(err_code);
}
static void sleep_mode_enter(void) {
uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE);
APP_ERROR_CHECK(err_code);
// Prepare wakeup buttons.
err_code = bsp_btn_ble_sleep_mode_prepare();
APP_ERROR_CHECK(err_code);
// Go to system-off mode (this function will not return; wakeup will cause a reset).
err_code = sd_power_system_off();
APP_ERROR_CHECK(err_code);
}
static void on_adv_evt(ble_adv_evt_t ble_adv_evt) {
uint32_t err_code;
switch (ble_adv_evt) {
case BLE_ADV_EVT_FAST:
err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING);
APP_ERROR_CHECK(err_code);
break;
case BLE_ADV_EVT_IDLE:
sleep_mode_enter();
break;
default:
break;
}
}
static void ble_evt_handler(ble_evt_t
const * p_ble_evt, void * p_context) {
uint32_t err_code;
switch (p_ble_evt - > header.evt_id) {
case BLE_GAP_EVT_CONNECTED:
err_code = bsp_indication_set(BSP_INDICATE_CONNECTED);
APP_ERROR_CHECK(err_code);
m_conn_handle = p_ble_evt - > evt.gap_evt.conn_handle;
err_code = nrf_ble_qwr_conn_handle_assign( & m_qwr, m_conn_handle);
APP_ERROR_CHECK(err_code);
break;
case BLE_GAP_EVT_DISCONNECTED:
m_conn_handle = BLE_CONN_HANDLE_INVALID;
break;
case BLE_GAP_EVT_PHY_UPDATE_REQUEST: {
ble_gap_phys_t
const phys = {
.rx_phys = BLE_GAP_PHY_AUTO,
.tx_phys = BLE_GAP_PHY_AUTO,
};
err_code = sd_ble_gap_phy_update(p_ble_evt - > evt.gap_evt.conn_handle, & phys);
APP_ERROR_CHECK(err_code);
}
break;
case BLE_GAP_EVT_SEC_PARAMS_REQUEST:
// Pairing not supported
err_code = sd_ble_gap_sec_params_reply(m_conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL);
APP_ERROR_CHECK(err_code);
break;
case BLE_GATTS_EVT_SYS_ATTR_MISSING:
// No system attributes have been stored.
err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0);
APP_ERROR_CHECK(err_code);
break;
case BLE_GATTC_EVT_TIMEOUT:
// Disconnect on GATT Client timeout event.
err_code = sd_ble_gap_disconnect(p_ble_evt - > evt.gattc_evt.conn_handle,
BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
APP_ERROR_CHECK(err_code);
break;
case BLE_GATTS_EVT_TIMEOUT:
// Disconnect on GATT Server timeout event.
err_code = sd_ble_gap_disconnect(p_ble_evt - > evt.gatts_evt.conn_handle,
BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
APP_ERROR_CHECK(err_code);
break;
default:
// No implementation needed.
break;
}
}
static void ble_stack_init(void) {
ret_code_t err_code;
err_code = nrf_sdh_enable_request();
APP_ERROR_CHECK(err_code);
// Configure the BLE stack using the default settings.
// Fetch the start address of the application RAM.
uint32_t ram_start = 0;
err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, & ram_start);
APP_ERROR_CHECK(err_code);
// Enable BLE stack.
err_code = nrf_sdh_ble_enable( & ram_start);
APP_ERROR_CHECK(err_code);
// Register a handler for BLE events.
NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL);
}
void gatt_evt_handler(nrf_ble_gatt_t * p_gatt, nrf_ble_gatt_evt_t
const * p_evt) {
if ((m_conn_handle == p_evt - > conn_handle) && (p_evt - > evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED)) {
m_ble_nus_max_data_len = p_evt - > params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH;
// NRF_LOG_INFO("Data len is set to 0x%X(%d)", m_ble_nus_max_data_len, m_ble_nus_max_data_len);
}
NRF_LOG_DEBUG("ATT MTU exchange completed. central 0x%x peripheral 0x%x",
p_gatt - > att_mtu_desired_central,
p_gatt - > att_mtu_desired_periph);
}
void gatt_init(void) {
ret_code_t err_code;
err_code = nrf_ble_gatt_init( & m_gatt, gatt_evt_handler);
APP_ERROR_CHECK(err_code);
err_code = nrf_ble_gatt_att_mtu_periph_set( & m_gatt, NRF_SDH_BLE_GATT_MAX_MTU_SIZE);
APP_ERROR_CHECK(err_code);
}
void uart_event_handle(app_uart_evt_t * p_event) {
static uint8_t data_array[BLE_NUS_MAX_DATA_LEN];
static uint8_t index = 0;
uint32_t err_code;
switch (p_event - > evt_type) {
case APP_UART_DATA_READY:
UNUSED_VARIABLE(app_uart_get( & data_array[index]));
index++;
if ((data_array[index - 1] == '\n') || (index >= (m_ble_nus_max_data_len))) {
NRF_LOG_HEXDUMP_DEBUG(data_array, index);
do {
uint16_t length = (uint16_t) index;
err_code = ble_nus_data_send( & m_nus, data_array, & length, m_conn_handle);
if ((err_code != NRF_ERROR_INVALID_STATE) && (err_code != NRF_ERROR_BUSY) &&
(err_code != NRF_ERROR_NOT_FOUND)) {
APP_ERROR_CHECK(err_code);
}
} while (err_code == NRF_ERROR_BUSY);
index = 0;
}
break;
case APP_UART_COMMUNICATION_ERROR:
APP_ERROR_HANDLER(p_event - > data.error_communication);
break;
case APP_UART_FIFO_ERROR:
APP_ERROR_HANDLER(p_event - > data.error_code);
break;
default:
break;
}
}
static void uart_init(void) {
uint32_t err_code;
app_uart_comm_params_t
const comm_params = {
.rx_pin_no = RX_PIN_NUMBER,
.tx_pin_no = TX_PIN_NUMBER,
.rts_pin_no = RTS_PIN_NUMBER,
.cts_pin_no = CTS_PIN_NUMBER,
.flow_control = APP_UART_FLOW_CONTROL_DISABLED,
.use_parity = false,
#if defined(UART_PRESENT)
.baud_rate = NRF_UART_BAUDRATE_115200
#else
.baud_rate = NRF_UARTE_BAUDRATE_115200
#endif
};
APP_UART_FIFO_INIT( & comm_params,
UART_RX_BUF_SIZE,
UART_TX_BUF_SIZE,
uart_event_handle,
APP_IRQ_PRIORITY_LOWEST,
err_code);
APP_ERROR_CHECK(err_code);
}
static void advertising_init(void) {
uint32_t err_code;
ble_advertising_init_t init;
memset( & init, 0, sizeof(init));
init.advdata.name_type = BLE_ADVDATA_FULL_NAME;
init.advdata.include_appearance = false;
init.advdata.flags = BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE;
init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]);
init.srdata.uuids_complete.p_uuids = m_adv_uuids;
init.config.ble_adv_fast_enabled = true;
init.config.ble_adv_fast_interval = APP_ADV_INTERVAL;
init.config.ble_adv_fast_timeout = APP_ADV_DURATION;
init.evt_handler = on_adv_evt;
err_code = ble_advertising_init( & m_advertising, & init);
APP_ERROR_CHECK(err_code);
ble_advertising_conn_cfg_tag_set( & m_advertising, APP_BLE_CONN_CFG_TAG);
}
static void log_init(void) {
ret_code_t err_code = NRF_LOG_INIT(NULL);
APP_ERROR_CHECK(err_code);
NRF_LOG_DEFAULT_BACKENDS_INIT();
}
static void power_management_init(void) {
ret_code_t err_code;
err_code = nrf_pwr_mgmt_init();
APP_ERROR_CHECK(err_code);
}
static void idle_state_handle(void) {
UNUSED_RETURN_VALUE(NRF_LOG_PROCESS());
nrf_pwr_mgmt_run();
}
/**@brief Function for starting advertising.
*/
static void advertising_start(void) {
uint32_t err_code = ble_advertising_start( & m_advertising, BLE_ADV_MODE_FAST);
APP_ERROR_CHECK(err_code);
}
/**@brief Application main function.
*/
int main(void) {
bool erase_bonds;
// Initialize.
uart_init();
log_init();
ret_code_t err_code;
uint8_t SERVO_PIN = 2;
uint8_t SERVO_PIN2 = 3;
/* 1-channel PWM, 50Hz, output on DK LED pins, 20ms period */
app_pwm_config_t pwm1_cfg = APP_PWM_DEFAULT_CONFIG_1CH(20000 L, SERVO_PIN);
app_pwm_config_t pwm2_cfg = APP_PWM_DEFAULT_CONFIG_1CH(20000 L, SERVO_PIN2);
/* Switch the polarity of the first channel. */
pwm1_cfg.pin_polarity[0] = APP_PWM_POLARITY_ACTIVE_HIGH;
pwm2_cfg.pin_polarity[0] = APP_PWM_POLARITY_ACTIVE_HIGH;
/* Initialize and enable PWM. */
err_code = app_pwm_init( & PWM1, & pwm1_cfg, NULL);
APP_ERROR_CHECK(err_code);
err_code = app_pwm_init( & PWM2, & pwm2_cfg, NULL);
APP_ERROR_CHECK(err_code);
app_pwm_enable( & PWM1);
app_pwm_enable( & PWM2);
nrf_gpio_cfg_output(LED_PIN); // Configure pin as output
nrf_gpio_pin_clear(LED_PIN);
timers_init();
power_management_init();
ble_stack_init();
gap_params_init();
gatt_init();
services_init();
advertising_init();
conn_params_init();
advertising_start();
for (;;) {
if (flag == 1) {
while (app_pwm_channel_duty_set( & PWM1, 0, servo_pos_min) == NRF_ERROR_BUSY); //door closed
nrf_delay_ms(3000);
while (app_pwm_channel_duty_set( & PWM2, 0, servo_pos_min) == NRF_ERROR_BUSY); //locked
nrf_delay_ms(3000);
nrf_gpio_pin_set(LED_PIN); // Set high
} else if (flag == 2) {
nrf_gpio_pin_clear(LED_PIN);
nrf_delay_ms(3000);
while (app_pwm_channel_duty_set( & PWM2, 0, servo_pos_max) == NRF_ERROR_BUSY); //unlock
nrf_delay_ms(3000);
while (app_pwm_channel_duty_set( & PWM1, 0, servo_pos_max) == NRF_ERROR_BUSY);
}
idle_state_handle();
}
}
void bleBLE_dataReceive(char * val) {
if (val[0] == 'c') {
flag = 1;
}
else if (val[0] == 'o') {
flag = 2;
}
}
Comments