Ensar Karabudak
Published

Remote Object Detection with Google Coral and Sixfab CORE

Object detection remotely and easily with Sixfab CORE and Google Coral.

IntermediateProtip2 hours2,959
Remote Object Detection with Google Coral and Sixfab CORE

Things used in this project

Hardware components

Raspberry Pi 4 Model B
Raspberry Pi 4 Model B
×1
Raspberry Pi 4G/LTE Cellular Modem Kit
Sixfab Raspberry Pi 4G/LTE Cellular Modem Kit
or Raspberry Pi Cellular IoT Kit (LTE-M)
×1
Coral USB Accelerator
Google Coral USB Accelerator
×1
Sixfab Raspberry Pi IP54 Outdoor Project Enclosure
×1
Camera Module
Raspberry Pi Camera Module
×1

Software apps and online services

Raspbian
Raspberry Pi Raspbian
Sixfab CORE

Story

Read more

Code

detect_image.py

Python
# Lint as: python3
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""Example using PyCoral to detect objects in a given image.

To run this code, you must attach an Edge TPU attached to the host and
install the Edge TPU runtime (`libedgetpu.so`) and `tflite_runtime`. For
device setup instructions, see coral.ai/docs/setup.

Example usage:
```
bash examples/install_requirements.sh detect_image.py

python3 examples/detect_image.py \
  --model test_data/ssd_mobilenet_v2_coco_quant_postprocess_edgetpu.tflite \
  --labels test_data/coco_labels.txt \
  --input test_data/grace_hopper.bmp \
  --output ${HOME}/grace_hopper_processed.bmp
```
"""

import argparse
import time

from PIL import Image
from PIL import ImageDraw

from pycoral.adapters import common
from pycoral.adapters import detect
from pycoral.utils.dataset import read_label_file
from pycoral.utils.edgetpu import make_interpreter


def draw_objects(draw, objs, labels):
  """Draws the bounding box and label for each object."""
  for obj in objs:
    bbox = obj.bbox
    draw.rectangle([(bbox.xmin, bbox.ymin), (bbox.xmax, bbox.ymax)],
                   outline='red')
    draw.text((bbox.xmin + 10, bbox.ymin + 10),
              '%s\n%.2f' % (labels.get(obj.id, obj.id), obj.score),
              fill='red')


def main():
  parser = argparse.ArgumentParser(
      formatter_class=argparse.ArgumentDefaultsHelpFormatter)
  parser.add_argument('-m', '--model', required=True,
                      help='File path of .tflite file')
  parser.add_argument('-i', '--input', required=True,
                      help='File path of image to process')
  parser.add_argument('-l', '--labels', help='File path of labels file')
  parser.add_argument('-t', '--threshold', type=float, default=0.4,
                      help='Score threshold for detected objects')
  parser.add_argument('-o', '--output',
                      help='File path for the result image with annotations')
  parser.add_argument('-c', '--count', type=int, default=5,
                      help='Number of times to run inference')
  args = parser.parse_args()

  labels = read_label_file(args.labels) if args.labels else {}
  interpreter = make_interpreter(args.model)
  interpreter.allocate_tensors()

  image = Image.open(args.input)
  _, scale = common.set_resized_input(
      interpreter, image.size, lambda size: image.resize(size, Image.ANTIALIAS))

  print('----INFERENCE TIME----')
  print('Note: The first inference is slow because it includes',
        'loading the model into Edge TPU memory.')
  for _ in range(args.count):
    start = time.perf_counter()
    interpreter.invoke()
    inference_time = time.perf_counter() - start
    objs = detect.get_objects(interpreter, args.threshold, scale)
    print('%.2f ms' % (inference_time * 1000))

  print('-------RESULTS--------')
  if not objs:
    print('No objects detected')

  for obj in objs:
    print(labels.get(obj.id, obj.id))
    print('  id:    ', obj.id)
    print('  score: ', obj.score)
    print('  bbox:  ', obj.bbox)

  if args.output:
    image = image.convert('RGB')
    draw_objects(ImageDraw.Draw(image), objs, labels)
    image.save(args.output)
    image.show()


if __name__ == '__main__':
  main()

detect_image.py

Credits

Ensar Karabudak
8 projects • 9 followers
Contact

Comments

Please log in or sign up to comment.