Giridharan KumaraveluHans Scharler
Published © MIT

Condition-based Maintenance of a Duct Fan using ThingSpeak

An example of a condition-based maintenance system using algorithms in MATLAB to identify faults & estimate time to service.

IntermediateFull instructions provided5 hours6,273
Condition-based Maintenance of a Duct Fan using ThingSpeak

Things used in this project

Hardware components

Internet Button
Particle Internet Button
×1
Duct Fan
Any similar equipment can work with appropriate training of the algorithm.
×1

Software apps and online services

ThingSpeak API
ThingSpeak API
MATLAB
MATLAB
Maker service
IFTTT Maker service

Hand tools and fabrication machines

Velcro
Vise
Power source
USB Power Bank
Cardboard
Duct Tape

Story

Read more

Code

Training.m

MATLAB
%%
%Data Collection and Labeling
clc;
clear all;
labelPoints = {[252,500],[251,500]}; %FILL IN THE LABEL POINTS eg. {[252,500],[251,500]}
NoOfFailureModes = 2;
estimateRULFlags = [false, true]; %change the corresponding flags to enable/disable RUL estimation for corresponding failure modes 
path = 'Datasets/'; %Verify if this is the correct path for your dataset files
labels = {[categorical("OFF"),categorical("ON"),categorical("DUCT BLOCKAGE")], ...
          [categorical("OFF"),categorical("ON"),categorical("ROTOR IMBALANCE")]};

rawdata = cell(NoOfFailureModes);
data = cell(NoOfFailureModes);

for i = 1:NoOfFailureModes
    rawdata{i} = readtable([path 'Dataset' num2str(i) '.csv'],'Delimiter',','); %Read the downloaded csv file
    data{i} = dataParsing(rawdata{i},labelPoints{i},labels{i},i); %Parse the rawdata
end

%%
%Data Exploration
fs = 100; %Sampling Frequency
L = 100; %Length of each data sample is 100 sensor readings
f = fs*(0:(L/2))/L; % Frequency bins until Nyquist Frequency at which FFT is computed
convertToMinutes = (1/fs)/60; %Convert sample number to minutes 0.01/60
votype = 'VideoWriter'; %Record the Exploration to view it again
vo = VideoWriter('Data Exploration Video', 'MPEG-4');
set(vo, 'FrameRate', 5); 
open(vo);
for i = 1:NoOfFailureModes
    NoOfDataPoints = height(data{i});
    x = zeros(L*NoOfDataPoints,0);
    y = zeros(L*NoOfDataPoints,0);
    z = zeros(L*NoOfDataPoints,0);
    figure;
    set(gcf,'Visible','on')
    for j = 1:NoOfDataPoints
        data{i}.X_FFT(j,:) = computeFFT(data{i}.X(j,:)-mean(data{i}.X(j,:)),L);  
        data{i}.Y_FFT(j,:) = computeFFT(data{i}.Y(j,:)-mean(data{i}.Y(j,:)),L);
        data{i}.Z_FFT(j,:) = computeFFT(data{i}.Z(j,:)-mean(data{i}.Z(j,:)),L);
        x((j-1)*L+1 : j*L) = data{i}.X(j,:);
        y((j-1)*L+1 : j*L) = data{i}.Y(j,:);
        z((j-1)*L+1 : j*L) = data{i}.Z(j,:);
        t = (1:j*L)*convertToMinutes;
        
        subplot(3,2,1); 
        plot(t,x);  
        title({"Experiment: " + num2str(i) , "Time Domain"});
        xlabel("time (min.)",'FontWeight','bold');
        ylabel("X",'rotation',0,'FontWeight','bold'); 
        
        subplot(3,2,2); 
        bar(f,data{i}.X_FFT(j,:)); 
        title({"Sample: " + num2str(j) + "; Label: " + char(data{i}.Label(j)), "Frequency Domain"});
        xlabel("frequency (Hz)",'FontWeight','bold');
        ylabel("X",'rotation',0,'FontWeight','bold'); 
        
        subplot(3,2,3); 
        plot(t,y); 
        xlabel("time (min.)",'FontWeight','bold');
        ylabel("Y",'rotation',0,'FontWeight','bold');
        
        subplot(3,2,4); 
        bar(f,data{i}.Y_FFT(j,:)); 
        xlabel("frequency (Hz)",'FontWeight','bold');
        ylabel("Y",'rotation',0,'FontWeight','bold');
        
        subplot(3,2,5); 
        plot(t,z); 
        xlabel("time (min.)",'FontWeight','bold');
        ylabel("Z",'rotation',0,'FontWeight','bold'); 
        
        subplot(3,2,6); 
        bar(f,data{i}.Z_FFT(j,:)); 
        xlabel("frequency (Hz)",'FontWeight','bold');
        ylabel("Z",'rotation',0,'FontWeight','bold'); 
        
        drawnow;
        writeVideo(vo, getframe(gcf));
    end
end
close(vo);
%%
%Feature Extraction
combinedFeatures = cell2table(cell(0,0)); 
features = cell(NoOfFailureModes);
for i = 1:NoOfFailureModes %Combine the experiments data in one variable
    features{i} = extractFeatures(data{i});
    combinedFeatures = [combinedFeatures;features{i}];
end

combinedFeatures = sortrows(combinedFeatures); %Sort the combined data based on Label
combinedFeatures.sno = []; %Delete sno, it is no longer needed after sorting.
NoOfDataPoints = width(combinedFeatures);
for i = 1:NoOfDataPoints %Plot the features in different figures
    if(mod(i-1,4)==0) 
        figure;
    end
    subplot(4,1,mod(i-1,4)+1); 
    plot(combinedFeatures.(i)); 
    xlabel('Sample No.');
    ylabel(combinedFeatures.Properties.VariableNames(i));
end

%%
%Build Machine Learning Model
save('Fan Diagonizer Model.mat','trainedModel','labels');
%%
%Synthesize Health Indicator
selectedFeatures = cell(NoOfFailureModes,1);
selectedFeatures{1,:} = {'FreqX','FreqY'}; %FILL IN the selected features for Experiment 1 if you estimate RUL for failure mode 1 eg. {'FreqX','FreqY'}
selectedFeatures{2,:} = {'StdZ'}; %FILL IN the selected features for Experiment 2 if you estimate RUL for failure mode 2 eg. {'StdZ'}
newFeatures = features;
meanTrain = cell(NoOfFailureModes,1);
sdTrain = cell(NoOfFailureModes,1);
pcaCoeff = cell(NoOfFailureModes,1);
healthIndicator = cell(NoOfFailureModes,1);
conversion = cell(NoOfFailureModes,1);
time = cell(NoOfFailureModes,1);
for i = 1:NoOfFailureModes
    if(estimateRULFlags(i))
        newFeatures{i}(newFeatures{i}.Label == 'OFF',:) = []; % Delete OFF data as it does not depend on Fan's health
        conversion{i} = getAvgSampleTime(rawdata{i}.created_at)/60; %in get average sample time in minutes from ThingSpeak time stamp
        newFeatures{i} = newFeatures{i}(:,selectedFeatures{i,:}); %Choose the selected features
        if(length(selectedFeatures{i,:}) ~= 1) %If there are more than 1 feature, fuse them using Principle Component Analysis
            meanTrain{i} = mean(newFeatures{i}{:,:});
            sdTrain{i} = std(newFeatures{i}{:,:});
            DataNormalized = (newFeatures{i}{:,:} - meanTrain{i})./sdTrain{i};
            pcaCoeff{i} = pca(DataNormalized);
            healthIndicator{i} = (newFeatures{i}{:,:} - meanTrain{i}) ./ sdTrain{i} * pcaCoeff{i}(:, 1);
            healthIndicator{i} = healthIndicator{i}(126:end); %Collect same number of data points from On state as in each failure level (125 points)
        else
            meanTrain{i} = NaN;
            sdTrain{i} = NaN;
            pcaCoeff{i} = NaN;
            healthIndicator{i} = newFeatures{i}{:,:};
            healthIndicator{i} = healthIndicator{i}(126:end);
        end
        figure;
        time{i} = (1:length(healthIndicator{i}));
        plot(time{i},healthIndicator{i},'-o');
        title(['Experiment ' num2str(i)]);
        xlabel('time (in min.)');
        ylabel('Health Indicator');
    end
end
%%
%Build and Fit RUL model
mdl = cell(NoOfFailureModes,1);
for i = 1:NoOfFailureModes
    if(estimateRULFlags(i))
        if(healthIndicator{i}(1) > healthIndicator{i}(end)) % if health indicator is showing decreasing trend
            threshold{1} = min(healthIndicator{1}); % take the least value in the experiment as threshold
            yIntercept{1} = 1e7;  %An arbitrarily large value to initialize the model
        else
            threshold{2} = max(healthIndicator{2}); % take the highest value in the experiment as threshold
            yIntercept{2} = -1e7; %An arbitrarily large value to initialize the model
        end
        mdl{i} = linearDegradationModel(...
            'Theta', 0, ...
            'ThetaVariance', 1e-5, ...   
            'Phi',  yIntercept{i}, ...
            'NoiseVariance', (0.1*threshold{i}/(threshold{i} + 1))^2, ... Assume 10% noise at the threshold
            'SlopeDetectionLevel', []);
        
        mdl{i}.fit({[(1:length(healthIndicator{i}))' healthIndicator{i}]}); %Fit the model
        
        totalLength = length(healthIndicator{i}) - 1;
        estTTSs = zeros(totalLength, 1);
        trueTTSs = zeros(totalLength, 1);
        CITTSs = zeros(totalLength, 2);
        pdfTTSs = cell(totalLength, 1);
        timeUnit = 'minutes';
        
        % Create figures and axes for plot updating
        figure
        ax1 = subplot(2, 1, 1);
        ax2 = subplot(2, 1, 2);
        for currentLength = 1:totalLength
            % Predict Remaining Useful Life
            [estTTS, CITTS, pdfTTS] = predictRUL(mdl{i},[currentLength healthIndicator{i}(currentLength)],threshold{i});
            trueTTS = (totalLength - currentLength + 1);
            % Keep prediction results
            estTTSs(currentLength) = estTTS;
            trueTTSs(currentLength) = trueTTS;
            CITTSs(currentLength, :) = CITTS;
            pdfTTSs{currentLength} = pdfTTS;
        end
        helperPlotTrend(ax1, currentLength, healthIndicator{i}, mdl{i}, threshold{i}, timeUnit,conversion{i});
        plot(ax2,(1:totalLength)*conversion{i},estTTSs*conversion{i});
        xlabel('Time (minutes)');
        ylabel('Time to Service (minutes)');
    end
end
save('Fan TTS Model.mat','mdl','conversion','threshold', 'meanTrain', 'sdTrain','pcaCoeff','selectedFeatures');
%%
%Helper Functions
function P1 = computeFFT(X,L)
    Y = fft(X);
    P2 = abs(Y/L);
    P1 = P2(1:L/2+1);
    P1(2:end-1) = 2*P1(2:end-1);
end

function avgTime = getAvgSampleTime(data)
    x = cellfun(@decode,data);
    for i = 1:length(x)
        y(i,:) = datevec(x(i));
    end
    for i = 2:length(y)
        diff(i,:) = etime(y(i,:),y(i-1,:));
    end
    avgTime = mean(diff); %in seconds
end

function y = decode(data)
    y = (datetime(data,'TimeZone','local','Format','yyyy-MM-dd HH:mm:ss Z'));
end

function helperPlotTrend(ax, currentLength, healthIndicator, mdl, threshold, timeUnit, conversion)
    t = (1:size(healthIndicator, 1))*conversion;
    HIpred = mdl.Phi + mdl.Theta*t/conversion;
    title(ax, sprintf('Sample %d', currentLength));
    cla(ax)
    hold(ax,'on');
    plot(ax, t, HIpred);
    plot(ax, t(1:currentLength), healthIndicator(1:currentLength, :))
    plot(ax, t, threshold*ones(1, length(t)), 'r')
    ylabel(ax, 'Health Indicator')
    xlabel(ax, ['Time (' timeUnit ')'])
    legend(ax, 'Model','Health Indicator', 'Threshold', 'Location', 'Northwest')
end

function data = dataParsing(rawdata,labelPoints,labels,dataset)
    bias = 128;
    noOfDataPoints = length(rawdata.entry_id);
    labelPoints = [0 labelPoints noOfDataPoints];

    for i = 1:length(labelPoints)-1 
        Label(labelPoints(i)+1:labelPoints(i+1),:) = labels(i); %Create Labels for the data points
    end
    j = 1;

    if(dataset == 2) %offset for sno for the second experiment, to avoid same sno for the data points between experiments
        offset = 0;
    else
        offset = 2000;
    end

    for i = 1:noOfDataPoints
        text1 = strsplit(rawdata.field1{i},',');
        text2 = strsplit(rawdata.field2{i},',');
        text3 = strsplit(rawdata.field3{i},',');
        text4 = strsplit(rawdata.field4{i},',');
        text5 = strsplit(rawdata.field5{i},',');
        text6 = strsplit(rawdata.field6{i},',');
        var = zeros(length(text1)-1,6);
        flag = true;
        for k = 1:length(text1)-1 %to neglect the last comma, use -1 
           var(k,1) = str2num(text1{k})-bias;
           var(k,2) = str2num(text2{k})-bias;
           var(k,3) = str2num(text3{k})-bias;
           if(var(k,1) ~= -bias || var(k,2) ~= -bias || var(k,3) ~= -bias ) %Turning the device off and on will reset the first data set to all zeroes
               var(k,4) = str2num(text4{k})-bias;
               var(k,5) = str2num(text5{k})-bias;
               var(k,6) = str2num(text6{k})-bias;
           else
               flag = false;
               break;
           end
        end
        if(flag) %accept a valid datapoint
            data.Label(j,:) = Label(i);
            data.sno(j,:) = rawdata.entry_id(i) + offset;
            data.X(j,:) = [var(:,1);var(:,4)];
            data.Y(j,:) = [var(:,2);var(:,5)];
            data.Z(j,:) = [var(:,3);var(:,6)];
            j = j+1;
        end
    end

    data = struct2table(data);

end

function features = extractFeatures (data)
features.Label = data.Label;
features.sno = data.sno;
freqN = 0; %No. of top frequency bins to compute cumulative energy

fs = 100; %Sampling Frequency in Hz
L = 100; %No. of sensor readings in each data point
f = fs*(0:(L/2))/L; %Frequencies (till Nyquist frequency) at which FFT is computed
for i = 1:height(data)
        signalX = data.X(i,:);
        features.StdX(i,:) = std(signalX);
        signalX = (signalX - mean(data.X(i,:)))/features.StdX(i,:);         
        signalX_FFT = sortrows([f;computeFFT(signalX,L)]',2,'descend');
        features.FreqX(i,:) = signalX_FFT(1,1);       
        features.EnergyAtFreqX(i,:) = sum(signalX_FFT(1:1+freqN,2));
        
        signalY = data.Y(i,:); 
        features.StdY(i,:) = std(signalY);
        signalY = (signalY - mean(data.Y(i,:)))/features.StdY(i,:);         
        signalY_FFT = sortrows([f;computeFFT(signalY,L)]',2,'descend');
        features.FreqY(i,:) = signalY_FFT(1,1);       
        features.EnergyAtFreqY(i,:) = sum(signalY_FFT(1:1+freqN,2));
        
        signalZ = data.Z(i,:); 
        features.StdZ(i,:) = std(signalZ);
        signalZ = (signalZ - mean(data.Z(i,:)))/features.StdZ(i,:);         
        signalZ_FFT = sortrows([f;computeFFT(signalZ,L)]',2,'descend');
        features.FreqZ(i,:) = signalZ_FFT(1,1);
        features.EnergyAtFreqZ(i,:) = sum(signalZ_FFT(1:1+freqN,2));
        
end
features = struct2table(features);
end

Analysis.m

MATLAB
clc;
clear all;
%Fill in the following values
firstChID = 111111; %FILL IN first channel's ID 
firstReadAPIKey = 'XXXXXXXXXXXXXXX'; %FILL IN first channel's Read API key 
secondChID = 123456;  %FILL IN second channel's ID
secondWriteAPIKey = 'YYYYYYYYYYYYYYYY'; %FILL IN second channel's Write API key
secondReadAPIKey = 'ZZZZZZZZZZZZZZZZ'; %FILL IN second channel's Read API key
dropBoxAccessToken ='AaAaAaAaAaAaAaAaAaAaAaAaAaAaAaAaAaAaAaAaAaAaAaAaAaAaAaAaAaAaAaAa'; %FILL IN dropbox access token
IFTTTURL = 'https://maker.ifttt.com/trigger/Alert/with/key/1a1a1a1a1a1a1a1a1a1a1'; %FILL IN IFTTT URL 
deviceID = '123456789012345678901234567890'; %FILL IN internet button's device ID
deviceAccessToken = '2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b'; %FILL IN internet button's device access token
thresholdTTS = 10; %email will be sent if the fan's TTS is less than this value (in minutes)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
bias = 128;
rawdata = thingSpeakRead(firstChID,'Fields',[1,2,3,4,5,6],'NumPoints',1,...
                         'ReadKey',firstReadAPIKey,'OutputFormat','table'); %Read the latest data of six fields from first channel
data = dataParsing(rawdata,bias); %Parse the six string fields
features = extractFeatures(data); %Extract features from this data
[mdl, labels] = getmodel(dropBoxAccessToken); %Get the ML Classifier model from DropBox
fanState = (mdl.predictFcn(features)); %Predict the state of the Fan
display(fanState,'Output'); 
switch(fanState)
    case labels{1}(1) 
        out = 0;
    case labels{1}(2) 
        out = 1;
    case labels{1}(3) 
        out = 2;
    case labels{2}(3)
        out = 3;
end
[estTTS,healthIndicator,threshold,EmailAlertFlag] = ...
getValues(features, out,dropBoxAccessToken, IFTTTURL, secondChID,thresholdTTS,labels,secondReadAPIKey) %Get the others values to be written on second channel

thingSpeakWrite(secondChID,[rawdata.Z2,estTTS,out,healthIndicator,threshold,EmailAlertFlag], ...
'Fields',[1,2,3,4,5,6],'WriteKey',secondWriteAPIKey); %Write the results in second channel        
deviceURL = ['https://api.particle.io/v1/devices/' deviceID '/Alert']; 
try
    response = webwrite(deviceURL,'access_token',deviceAccessToken,'args',string(out)); %Alert Internet Button about the latest fan state
catch someException
    display(someException.message);
end

function [estTTS,healthIndicator,threshold,EmailAlertFlag] = getValues(features, out,dropBoxAccessToken, IFTTTURL, secondChID,thresholdTTS,labels,readKey)
    if(out == 0 || out == 1) %Don't need Predictive Maintenance during normal operation
        estTTS = NaN; 
        healthIndicator = NaN;
        threshold = NaN;       
    else 
        rawdata = downloadFromDropbox(dropBoxAccessToken,'Fan TTS Model.mat');
        f = fopen('Fan TTS Model.mat','w');
        fwrite(f,rawdata);
        fclose(f);
        T = load('Fan TTS Model.mat');
        failureMode = out - 1;
        if(length(T.selectedFeatures{failureMode})==1)
            healthIndicator =  table2array(features(:,T.selectedFeatures{failureMode}));
            threshold = T.threshold{failureMode};
            [estTTS, CITTS, pdfTTS] = predictRUL(T.mdl{failureMode},[-NaN healthIndicator],threshold); 
            estTTS = estTTS*T.conversion{failureMode}; 
            CITTS = CITTS*T.conversion{failureMode};
            pdfTTS.TTS = pdfTTS.RUL*T.conversion{failureMode};
        else
            selectedFeatures = features(:,T.selectedFeatures{failureMode});
            healthIndicator = (selectedFeatures{:,:} - T.meanTrain{failureMode}) ./ T.sdTrain{failureMode} * T.pcaCoeff{failureMode}(:, 1);
            threshold = T.threshold{failureMode};
            [estTTS, CITTS, pdfTTS] = predictRUL(T.mdl{failureMode},[-NaN healthIndicator],threshold); 
            estTTS = estTTS*T.conversion{failureMode};
            CITTS = CITTS*T.conversion{failureMode};
            pdfTTS.TTS = pdfTTS.RUL*T.conversion{failureMode};
        end

    end
    
   
    Flag = webread(['https://api.thingspeak.com/channels/' num2str(secondChID) '/fields/6/last.json'],'api_key',readKey); %Read the latest email flag from the second channel
    if(~isstruct(Flag))
        EmailAlertFlag = 0;
    else
        if(out == 3 && estTTS < thresholdTTS && Flag.field6 == '0') %if the email hasn't been sent and if the Fan needs a maintanenance
             response = webwrite(IFTTTURL,'value1', string(estTTS)); %Request IFTTT service to send the email notification
             EmailAlertFlag = 1; %set the flag to avoid multiple emails.
        else
            if(Flag.field6 == '1' && out == 1) %if there was an email sent before and fan returns to normal operation indicating the performance of maintanenance
                EmailAlertFlag = 0; %Reset the flag
            else
                EmailAlertFlag = str2num(Flag.field6);
            end
        end
    end        
end



function data = dataParsing(rawdata,bias)
    noOfDataPoints = length(rawdata.Timestamps);
    for i = 1:noOfDataPoints
        text1 = strsplit(rawdata.X1{i},',');
        text2 = strsplit(rawdata.Y1{i},',');
        text3 = strsplit(rawdata.Z1{i},',');
        text4 = strsplit(rawdata.X2{i},',');
        text5 = strsplit(rawdata.Y2{i},',');
        text6 = strsplit(rawdata.Z2{i},',');
        var = zeros(length(text1)-1,6);
        for k = 1:length(text1)-1 %to neglect the last comma, use -1 
           var(k,1) = str2num(text1{k})-bias;
           var(k,2) = str2num(text2{k})-bias;
           var(k,3) = str2num(text3{k})-bias;
           var(k,4) = str2num(text4{k})-bias;
           var(k,5) = str2num(text5{k})-bias;
           var(k,6) = str2num(text6{k})-bias;
        end
        data.X(i,:) = [var(:,1);var(:,4)];
        data.Y(i,:) = [var(:,2);var(:,5)];
        data.Z(i,:) = [var(:,3);var(:,6)];    
    end
    data = struct2table(data);
end


function features = extractFeatures(data)
    freqN = 0; %No. of top frequency bins to compute cumulative energy

    fs = 100; %Sampling Frequency in Hz
    L = 100; %No. of sensor readings in each data point
    f = fs*(0:(L/2))/L; %Frequencies (till Nyquist frequency) at which FFT is computed
    for i = 1:height(data)
        signalX = data.X(i,:);
        features.StdX(i,:) = std(signalX);
        signalX = (signalX - mean(data.X(i,:)))/features.StdX(i,:);         
        signalX_FFT = sortrows([f;computeFFT(signalX,L)]',2,'descend');
        features.FreqX(i,:) = signalX_FFT(1,1);       
        features.EnergyAtFreqX(i,:) = sum(signalX_FFT(1:1+freqN,2));

        signalY = data.Y(i,:); 
        features.StdY(i,:) = std(signalY);
        signalY = (signalY - mean(data.Y(i,:)))/features.StdY(i,:);         
        signalY_FFT = sortrows([f;computeFFT(signalY,L)]',2,'descend');
        features.FreqY(i,:) = signalY_FFT(1,1);       
        features.EnergyAtFreqY(i,:) = sum(signalY_FFT(1:1+freqN,2));

        signalZ = data.Z(i,:); 
        features.StdZ(i,:) = std(signalZ);
        signalZ = (signalZ - mean(data.Z(i,:)))/features.StdZ(i,:);         
        signalZ_FFT = sortrows([f;computeFFT(signalZ,L)]',2,'descend');
        features.FreqZ(i,:) = signalZ_FFT(1,1);
        features.EnergyAtFreqZ(i,:) = sum(signalZ_FFT(1:1+freqN,2));

    end
    features = struct2table(features);
end


function P1 = computeFFT(X,L)
    Y = fft(X);
    P2 = abs(Y/L);
    P1 = P2(1:L/2+1);
    P1(2:end-1) = 2*P1(2:end-1);
end


function [mdl,labels] = getmodel(dropBoxAccessToken)
    rawdata = downloadFromDropbox(dropBoxAccessToken,'Fan Diagonizer Model.mat');
    f = fopen('Fan Diagonizer Model.mat','w');
    fwrite(f,rawdata);
    fclose(f);
    thefile = matfile('Fan Diagonizer Model.mat');
    mdl = thefile.trainedModel;
    labels = thefile.labels;
end



function output = downloadFromDropbox(dropboxAccessToken,varargin)
    narginchk(1,2);

    FName = varargin{1};

    % Generate the custom header
    headerFields = {'Authorization', ['Bearer ', dropboxAccessToken]};
    headerFields{2,1} = 'Dropbox-API-Arg';
    headerFields{2,2} = sprintf('{"path": "/%s"}',FName);
    headerFields{3,1} = 'Content-Type';
    headerFields{3,2} = 'application/octet-stream';
    headerFields = string(headerFields);

    % Set the options for WEBREAD
    opt = weboptions;
    opt.MediaType = 'application/octet-stream';
    opt.CharacterEncoding = 'ISO-8859-1';
    opt.RequestMethod = 'post';
    opt.HeaderFields = headerFields;

    % Upload the file
    try
        tempOutput = webread('https://content.dropboxapi.com/2/files/download', opt);
    catch someException
        throw(addCause(MException('downloadFromDropbox:unableToDownloadFile','Unable to download file.'),someException));
    end

    % If user requested output, pass along WEBWRITE output
    if isequal(nargout,1)
        output = tempOutput;
    end
end

function output = uploadToDropbox(dropboxAccessToken,dataFile) 
    
    % Check if input file exists
    if ~exist(dataFile,'file')
        throw(MException('uploadToDropbox:fileNotFound','Input file was not found.'));
    end

    % Read file contents
    try
        fid = fopen(dataFile, 'r');
        data = char(fread(fid)');
        fclose(fid);
    catch someException
        throw(addCause(MException('uploadToDropbox:unableToReadFile','Unable to read input file.'),someException));
    end

    % Generate the custom header
    [~,remoteFName, remoteExt] = fileparts(dataFile);
    headerFields = {'Authorization', ['Bearer ', dropboxAccessToken]};
    headerFields{2,1} = 'Dropbox-API-Arg';
    headerFields{2,2} = sprintf('{"path": "/%s%s", "mode": "overwrite", "autorename": false, "mute": false}',remoteFName, remoteExt);
    headerFields{3,1} = 'Content-Type';
    headerFields{3,2} = 'application/octet-stream';
    headerFields = string(headerFields);

    % Set the options for WEBWRITE
    opt = weboptions;
    opt.MediaType = 'application/octet-stream';
    opt.CharacterEncoding = 'ISO-8859-1';
    opt.RequestMethod = 'post';
    opt.HeaderFields = headerFields;

    % Upload the file
    try
        tempOutput = webwrite('https://content.dropboxapi.com/2/files/upload', data, opt);
    catch someException
        throw(addCause(MException('uploadToDropbox:unableToUploadFile','Unable to upload file.'),someException));
    end

    % If user requested output, pass along WEBWRITE output
    if isequal(nargout,1)
        output = tempOutput;
    end
end

Gauge.js

JavaScript
<script type='text/javascript' src='https://ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js'></script>
<script type='text/javascript' src='https://www.google.com/jsapi'></script>
<script type='text/javascript'>

  // set your channel id here
  var channel_id = 123456;
  // set your channel's read api key here
  var api_key = 'ZZZZZZZZZZZZZZZZ';
  // list of name off the gauge and value
  var value_names = ['','ON','BLOCK','TAPE'];
  var gauge_names = ['OFF','Normal','Abnormal', 'Alert!'];

  // global variables
  var chart, charts, data;

  // load the google gauge visualization
  google.load('visualization', '1', {packages:['gauge']});
  google.setOnLoadCallback(initChart);

  // display the data
  function displayData(point) {
    data.setValue(0, 0, gauge_names[point]);
    data.setValue(0, 1, point); 
    data.setFormattedValue(0, 1, value_names[point]);    //Formatting font and font size is not possible in gauge chart
    chart.draw(data, options);
  }

  // load the data
  function loadData() {
    // variable for the data point
    var p;

    // get the data from thingspeak
    $.getJSON('https://api.thingspeak.com/channels/' + channel_id + '/feed/last.json?api_key=' + api_key, function(data) {

      // get the data point
      p = data.field3;

      // if there is a data point display it
      if (p) {
        displayData(p);
      }

    });
  }

  // initialize the chart
  function initChart() {

    data = new google.visualization.DataTable();
    data.addColumn('string', 'Label');
    data.addColumn('number', 'Value');
    data.addRows(1);
    
    chart = new google.visualization.Gauge(document.getElementById('gauge_div'));
    options = {width: 240, height: 240, max: 3, redFrom: 1.5, redTo: 3, greenFrom:0.5, greenTo: 1.5, minorTicks: 0, majorTicks: ["Off","","","Bad"]};

    loadData();

    // load new data every 1 second
    setInterval('loadData()', 1000);
  }

</script>

HealthMonitor.ino

Arduino
#include <ThingSpeak.h> //You may have to Include these libraries manually in the Build Web IDE
#include <InternetButton.h>

/*Fill in the following values*/
unsigned long myChannelID =  111111;
const char * myWriteAPIKey = "WWWWWWWWWWWWWWWW";

TCPClient client;
const int noOfSamples = 101, bias = 128; //The first reading of the accelerometer in my InternetButton was always corrupted, so I always read 101 readings and drop the first reading
InternetButton button = InternetButton();

Timer myclock(10, do_every_ms); // Timer to sample accelerometer at 100 Hz

int x[noOfSamples], y[noOfSamples], z[noOfSamples], count = -1;
bool ready = true; //Flag that will be set once a set of 100 readings are read from the accelerometer

void setup() 
{
  button.begin(); //Initialize Internet Button 
  Particle.function("Alert", setColor); //Setup to call setColor() from the cloud. Particle Device Cloud API calls this function whenever it receives the keyword "Alert" through HTTP POST
  Serial.begin(9600); //Initialize Serial port for debugging purposes
  ThingSpeak.begin(client); //Initialize ThingSpeak Client
  myclock.start(); //Start the timer to read accelerometer data
}

void loop() 
{
 
 if(ready) // if readings are ready to be sent to ThingSpeak
    {
        myclock.stop(); //Pause reading accelerometer
        setData(); //Compose CSV texts from the integer readings and set them to their respective fields
        sendData(); //Publish the set fields to ThingSpeak Channel
        count = -1; //Reset the counter 
        ready = false; //Reset the flag
        myclock.start(); //Continue reading accelerometer 
    }
}

void do_every_ms()
{
  if(count == noOfSamples)
    {
      ready = true;
    }
  else 
    {
      count++;
      x[count] = button.readX() + bias; // Raw sensor readings range from -128 to 128 which can have maximum length
      y[count] = button.readY() + bias; // of 4 characters when converted into a String. To have Strings of length 
      z[count] = button.readZ() + bias; // maximum 3 characters, add a bias term to remove the necessity of a '-' sign.
    }
}

void setData()
{ 
  
  for(int j = 0; j< 2; j++)
  {
      char text1[255] = "",text2[255] = "",text3[255] = ""; //Each ThingSpeak Field can hold maximum of 255 characters
        for(int i = 1 + j*floor(noOfSamples/2); i< (floor(noOfSamples/2)+1)*(1-j) + j*count; i++) //Compose CSV texts from readings
           {
               strcat(text1, String(x[i])+",");
               strcat(text2, String(y[i])+",");
               strcat(text3, String(z[i])+",");
           }
      ThingSpeak.setField(3*j + 1,text1);
      ThingSpeak.setField(3*j + 2,text2);
      ThingSpeak.setField(3*j + 3,text3);
      Serial.printlnf(String(3*j + 1) + ": " + text1);
      Serial.printlnf(String(3*j + 2) + ": " + text2);
      Serial.printlnf(String(3*j + 3) + ": "  + text3 );
  }
  
}


int setColor(String condition) //Change the color of the LED according to the condition received
{

  button.allLedsOff(); 
 
  if(!strcmp(condition,"0"))
       { 
           button.allLedsOn(0, 0, 0);
        }

else if(!strcmp(condition,"1"))
       { 
           button.allLedsOn(0,255, 0); //Green Color
        }
  else if(!strcmp(condition,"2"))
       { 
           button.allLedsOn(255, 0, 0); //Red Color
        }
  else if(!strcmp(condition,"3"))
       { 
           
           button.allLedsOn(255, 0, 0); //Red Color
           button.playNote("G6",8); //Alarm
        }
  else
       {
        button.allLedsOn(255, 128, 192); //Pink Color
        return -1;
        }
  return 1;
}



void sendData()
{ 
  button.ledOn(6,255, 128, 255); //Turn on the led
  Particle.publish(String(ThingSpeak.writeFields(myChannelID, myWriteAPIKey))); //Write the fields on ThingSpeak channel and Publish its response to Particle Console
  button.ledOn(6,0,0,0); //Turn off the led
} 

Credits

Giridharan Kumaravelu

Giridharan Kumaravelu

1 project • 9 followers
Hans Scharler

Hans Scharler

15 projects • 87 followers
IoT Engineer, Maker - I have a toaster that has been tweeting since 2008.

Comments