'''
ELEC 553 - Final Project
Spring 2025
Team Member: Lei Xia, Bruce Tian, Karthik, Yaqi
Reference:
https://www.instructables.com/Autonomous-Lane-Keeping-Car-Using-Raspberry-Pi-and/
https://www.hackster.io/team-elec424-dreamhouse/team-elec424-dreamhouse-c5ad62
'''
# Import Packages
import cv2
import numpy as np
import matplotlib.pyplot as plt
import math
import sys
import time
import os
import RPi.GPIO as GPIO
#Setup GPIO Interface
GPIO.setmode(GPIO.BCM)
GPIO.setup(18, GPIO.OUT)
GPIO.setup(19, GPIO.OUT)
pwm_esc = GPIO.PWM(18, 50)
pwm_serv = GPIO.PWM(19, 50)
pwm_esc.start(7.5) # puts DC motor on neutral
pwm_serv.start(7) # sets servo motor straight
# Encoder Setup
speed_encode = True
encoder_path = "/sys/module/encoder/parameters/encoder_val"
encoder_max_rotation = 304700000
encoder_min_rotation = 304600000
# Camera Setup
frame_width = 160
frame_height = 120
cam_idx = 0
# PD variables
kp = 0.09 # Proportional gain
kd = kp * 0.5 # Derivative gain
# Speed Values
zero_speed = 7.5 # Car in netural
base_speed = 8.13 # Initial Car moving speed
speed_change = 0.01
global_enc_vals = []
# Max number of loop
max_ticks = 4000
# Keep the loop alive
class NotSudo(Exception):
pass
# set speed to zero and steering to neutral
def reset_car():
pwm_esc.ChangeDutyCycle(7.5) # Puts motor on neutral
pwm_serv.ChangeDutyCycle(7) # Straight Steering
print("Car stopped & straighted") # Debug message
# Set speed to base speed and steering to neutral
def start_car():
print("Car Initialized.")
pwm_esc.ChangeDutyCycle(base_speed) # Puts motor on neutral
pwm_serv.ChangeDutyCycle(7) # Straight Steering
# Adjust the speed based on the speed encoder
def manage_speed():
# Read the encoder data
f = open(encoder_path, "r")
enc = int(f.readline()) # Get value frome encoder
enc = abs(enc)
f.close()
ret = enc # Probably redundant
global_enc_vals.append(enc)
# If within bounds (wait for car to start / stop), then do not change speed
ret = 0
# Part to adjust speed base on encider return
if enc >= encoder_max_rotation:
ret = -(speed_change)
elif enc <= encoder_min_rotation:
ret = (speed_change)
return ret
# Wait for a period of time
def wait(wait_time):
start_time = time.perf_counter()
end_time = start_time + wait_time
# Loop until finished
while (time.perf_counter() < end_time):
pass
return
# Detetct the blue lines
def detect_edges(frame):
# Filter for detect the blue lane
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
lower_blue = np.array([90, 50, 50], dtype="uint8")
upper_blue = np.array([130, 255, 255], dtype="uint8")
mask = cv2.inRange(hsv, lower_blue, upper_blue) # make mask
edges = cv2.Canny(mask, 50, 100) # Get edges
return edges
# Setup region of interest we want to look for
def region_of_interest(edges, roi_ratio=0.8):
# Edges
h, w = edges.shape
mask = np.zeros_like(edges)
top_y = int(h * roi_ratio)
polygon = np.array([[
(0, h),
(0, top_y),
(w, top_y),
(w, h),
]], np.int32)
cv2.fillPoly(mask, polygon, 255)
return cv2.bitwise_and(edges, mask)
# Find line segments
def detect_line_segments(cropped_edges):
# Set constants
rho = 1
theta = np.pi / 180
min_threshold = 10
# Get lines
line_segments = cv2.HoughLinesP(cropped_edges, rho, theta, min_threshold,
np.array([]), minLineLength=5, maxLineGap=150)
return line_segments
# finding slope of the line
def average_slope_intercept(frame, line_segments):
lane_lines = []
if line_segments is None:
print("No line segments detected")
return lane_lines
# Set boundries
height, width, _ = frame.shape
left_fit = []
right_fit = []
boundary = 1 / 3
left_region_boundary = width * (1 - boundary)
right_region_boundary = width * boundary
# Go through line segments and get line of best fit
for line_segment in line_segments:
for x1, y1, x2, y2 in line_segment:
if x1 == x2:
continue
fit = np.polyfit((x1, x2), (y1, y2), 1)
slope = (y2 - y1) / (x2 - x1)
intercept = y1 - (slope * x1)
if slope < 0:
if x1 < left_region_boundary and x2 < left_region_boundary:
left_fit.append((slope, intercept))
else:
if x1 > right_region_boundary and x2 > right_region_boundary:
right_fit.append((slope, intercept))
# Take average line of best fit
left_fit_average = np.average(left_fit, axis=0)
if len(left_fit) > 0:
lane_lines.append(make_points(frame, left_fit_average))
right_fit_average = np.average(right_fit, axis=0)
if len(right_fit) > 0:
lane_lines.append(make_points(frame, right_fit_average))
return lane_lines
# For getting visual of lines
def make_points(frame, line):
height, width, _ = frame.shape
slope, intercept = line
y1 = height # Bottom of the frame image
y2 = int(y1 / 2) # Make points from middle of the frame down
if slope == 0:
slope = 0.1
x1 = int((y1 - intercept) / slope)
x2 = int((y2 - intercept) / slope)
return [[x1, y1, x2, y2]]
# Get visual of lines
def display_lines(frame, lines, line_color=(0, 255, 0), line_width=6):
line_image = np.zeros_like(frame)
if lines is not None:
for line in lines:
for x1, y1, x2, y2 in line:
cv2.line(line_image, (x1, y1), (x2, y2), line_color, line_width)
line_image = cv2.addWeighted(frame, 0.8, line_image, 1, 1)
return line_image
# Show a hedaing line
def display_heading_line(frame, steering_angle, line_color=(0, 0, 255), line_width=5):
heading_image = np.zeros_like(frame)
height, width, _ = frame.shape
steering_angle_radian = steering_angle / 180.0 * math.pi
x1 = int(width / 2)
y1 = height
x2 = int(x1 - height / 2 / math.tan(steering_angle_radian))
y2 = int(height / 2)
cv2.line(heading_image, (x1, y1), (x2, y2), line_color, line_width)
heading_image = cv2.addWeighted(frame, 0.8, heading_image, 1, 1)
return heading_image
# Process the lane detection situations
def get_steering_angle(frame, lane_lines):
height, width, _ = frame.shape
# Both lanes present
if len(lane_lines) >= 2:
_, _, left_x2, _ = lane_lines[0][0]
_, _, right_x2, _ = lane_lines[1][0]
mid = int(width / 2)
x_offset = (left_x2 + right_x2) / 2 - mid
y_offset = int(height * 0.3)
# Only one lane detected
elif len(lane_lines) == 1:
x1, _, x2, _ = lane_lines[0][0]
x_avg = (x1 + x2) / 2
mid = int(width / 2)
y_offset = int(height * 0.3)
# Suppose the line is on the left
if x_avg < mid:
x_offset = ((x_avg + (x_avg + 100)) / 2 - mid)-1.4 # Right is righter
else:
x_offset = (((x_avg - 100) + x_avg) / 2 - mid) # Left is lefter
else:
x_offset = 0 # Straight
y_offset = int(height * 0.75)
angle_to_mid_radian = math.atan(x_offset / y_offset)
angle_to_mid_deg = int(angle_to_mid_radian * 180.0 / math.pi)
steering_angle = angle_to_mid_deg + 88
return steering_angle
# Plot the proportional, derivative and error
def plot_pd(p_vals, d_vals, error, show_img=False):
fig, ax1 = plt.subplots()
t_ax = np.arange(len(p_vals))
ax1.plot(t_ax, p_vals, '-', label="Proportional values")
ax1.plot(t_ax, d_vals, '-', label="Derivative values")
ax2 = ax1.twinx()
ax2.plot(t_ax, error, '--r', label="Error")
ax1.set_xlabel("Frames")
ax1.set_ylabel("PD_Value")
ax2.set_ylim(-90, 90)
ax2.set_ylabel("Error_Value")
plt.title("PD and Error Value with time")
fig.legend()
fig.tight_layout()
plt.savefig("PDError.png")
if show_img:
plt.show()
plt.clf()
# Plot the speed, steering and the error
def plot_pwm(speed_pwms, turn_pwms, error, show_img=False):
fig, ax1 = plt.subplots()
t_ax = np.arange(len(speed_pwms))
ax1.plot(t_ax, speed_pwms, '-', label="Speed")
ax1.plot(t_ax, turn_pwms, '-', label="Steering")
ax2 = ax1.twinx()
ax1.plot(t_ax, error / np.max(error), '--r', label="Error")
ax1.set_xlabel("Frames")
ax1.set_ylabel("Speed & Steer Duty Cycle")
ax2.set_ylabel("Error Value")
plt.title("Speed & Steering value with time")
fig.legend()
plt.savefig("SpeedSteeringError.png")
if show_img:
plt.show()
plt.clf()
# Setup paramater to detect red boxes
def isRedFloorVisible(image):
hsv_img = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) # Convert to HSV color space
cv2.imwrite("redfloor.jpg", hsv_img)
percentage = 25 # Parse out the color boundaries and the success boundaries
# lower and upper range for the lower part of red
lower_red1 = np.array([0, 40, 60], dtype="uint8")
upper_red1 = np.array([10, 255, 255], dtype="uint8")
# lower and upper range for the upper part of red
lower_red2 = np.array([170, 40, 60], dtype="uint8")
upper_red2 = np.array([180, 255, 255], dtype="uint8")
# create two masks to capture both ranges of red
mask1 = cv2.inRange(hsv_img, lower_red1, upper_red1)
mask2 = cv2.inRange(hsv_img, lower_red2, upper_red2)
mask = cv2.bitwise_or(mask1, mask2) # Combining the masks
output = cv2.bitwise_and(hsv_img, hsv_img, mask=mask) # Applying the mask
cv2.imwrite("redfloormask.jpg", output) # Save the output image
percentage_detected = np.count_nonzero(mask) * 100 / np.size(mask) # calculating what percentage of image falls between color boundaries
# if the percentage percentage_detected is betweeen the success boundaries, we return true, otherwise false for result
result = percentage < percentage_detected
if result:
print(percentage_detected)
return result, output
def main():
# Setup Base Variables
lastTime = 0
lastError = 0
SecondStopTick = 0
# Declare arrays for making the graphs
p_vals = [] # Proportional
d_vals = [] # Derivative
err_vals_1 = [] # Error
err_vals_2 = [] # Error
speed_vals = [] # Speed values
steer_vals = [] # Steering values
# set up video feed
video = cv2.VideoCapture(cam_idx, cv2.CAP_V4L2)
video.set(cv2.CAP_PROP_FRAME_WIDTH, frame_width)
video.set(cv2.CAP_PROP_FRAME_HEIGHT, frame_height)
#Start the car
start_car()
curr_speed = base_speed
counter = 0
passedFirstStopSign = False
while counter < max_ticks:
print("Beginning of the Measurement")
pwm_esc.ChangeDutyCycle(zero_speed)
# Read the image feed and resize to 160x120
ret, original_frame = video.read()
frame = cv2.resize(original_frame, (160, 120))
# Process the frame to determine the desired steering angle
edges = detect_edges(frame)
cv2.imshow("edges", edges)
roi = region_of_interest(edges, roi_ratio=0.9)
line_segments = detect_line_segments(roi)
lane_lines = average_slope_intercept(frame, line_segments)
lane_lines_image = display_lines(frame, lane_lines)
steering_angle = get_steering_angle(frame, lane_lines)
heading_image = display_heading_line(lane_lines_image,steering_angle)
# calculate changes for PD
now = time.time()
dt = now - lastTime
deviation = steering_angle - 90
# PD Code
error = deviation
base_turn = 7.25
proportional = kp * error
derivative = kd * (error - lastError) / dt
# Take values for graphs
p_vals.append(proportional)
d_vals.append(derivative)
err_vals_1.append(error)
speed_vals.append(curr_speed)
# determine actual turn behavior
turn_amt = base_turn + proportional + derivative
steer_vals.append(turn_amt)
pwm_serv.ChangeDutyCycle(turn_amt) # Drives the motor forward
# Red Box detection
if counter % 20: # Looks every 20 ticks
if not passedFirstStopSign:
isStopSign, floorSight = isRedFloorVisible(frame)
# Sees the red box
if isStopSign:
wait(3)
passedFirstStopSign = True
SecondStopTick = counter
# See the second box
elif passedFirstStopSign and counter > SecondStopTick+100:
isStopSign, _ = isRedFloorVisible(frame)
if isStopSign:
time.sleep(6)
pwm_esc.ChangeDutyCycle(zero_speed)
print("Reached the Final Stop, program exit.")
break # Stop forever
# speed encoding
if speed_encode:
if counter % 3 == 0: # Check every 3 ticks
# Adjust speed
temp_speed = manage_speed() + curr_speed
if temp_speed != curr_speed:
pwm_esc.ChangeDutyCycle(temp_speed) # Probably redundant
curr_speed = temp_speed
pwm_esc.ChangeDutyCycle(curr_speed) # Drives the DC motor (forward) #w/o encoder, curr_speed is base speed
wait(0.023) # Run at speed for a short amount of time
key = cv2.waitKey(1)
if key == 27:
break
counter += 1
# Reset car and close
reset_car()
video.release()
cv2.destroyAllWindows()
plot_pd(p_vals, d_vals, err_vals_1) # Save the Plots
plot_pwm(speed_vals, steer_vals, err_vals_1) # Recording encoder
if __name__ == "__main__":
main()
Comments
Please log in or sign up to comment.