Hackster is hosting Hackster Holidays, Ep. 6: Livestream & Giveaway Drawing. Watch previous episodes or stream live on Monday!Stream Hackster Holidays, Ep. 6 on Monday!
Viktor Shin
Published

BLE-to-Ethernet central with RP2040/W5100S

This project aims to demonstrate how to turn Pico W into BLE-to-Ethernet central using WIZnet W5100S

IntermediateFull instructions provided3 hours230
BLE-to-Ethernet central with RP2040/W5100S

Things used in this project

Hardware components

WIZnet Ethernet HAT
WIZnet Ethernet HAT
×1
Raspberry Pi Pico
Raspberry Pi Pico
Actually Pico W was used, but it doesn't show up in the component list
×2

Software apps and online services

MicroPython
MicroPython
MQTT
MQTT

Story

Read more

Schematics

WIZnet Ethernet HAT

Reference schematic for WIZnet Ethernet HAT

Code

main.py

MicroPython
# This example finds and connects to a BLE temperature sensor (e.g. the one in ble_temperature.py).
import network
import bluetooth
import random
import struct
import time
import micropython
from ble_advertising import decode_services, decode_name
from micropython import const
from machine import Pin, SPI
from usocket import socket
from umqttsimple import MQTTClient
#mqtt config
mqtt_server = '192.168.11.7'
client_id = 'wiz'
topic_pub = b'hello'
topic_msg = b'Hello Pico'

last_message = 0
message_interval = 5
counter = 0

_IRQ_CENTRAL_CONNECT = const(1)
_IRQ_CENTRAL_DISCONNECT = const(2)
_IRQ_GATTS_WRITE = const(3)
_IRQ_GATTS_READ_REQUEST = const(4)
_IRQ_SCAN_RESULT = const(5)
_IRQ_SCAN_DONE = const(6)
_IRQ_PERIPHERAL_CONNECT = const(7)
_IRQ_PERIPHERAL_DISCONNECT = const(8)
_IRQ_GATTC_SERVICE_RESULT = const(9)
_IRQ_GATTC_SERVICE_DONE = const(10)
_IRQ_GATTC_CHARACTERISTIC_RESULT = const(11)
_IRQ_GATTC_CHARACTERISTIC_DONE = const(12)
_IRQ_GATTC_DESCRIPTOR_RESULT = const(13)
_IRQ_GATTC_DESCRIPTOR_DONE = const(14)
_IRQ_GATTC_READ_RESULT = const(15)
_IRQ_GATTC_READ_DONE = const(16)
_IRQ_GATTC_WRITE_DONE = const(17)
_IRQ_GATTC_NOTIFY = const(18)
_IRQ_GATTC_INDICATE = const(19)

_ADV_IND = const(0x00)
_ADV_DIRECT_IND = const(0x01)
_ADV_SCAN_IND = const(0x02)
_ADV_NONCONN_IND = const(0x03)

# org.bluetooth.service.environmental_sensing
_ENV_SENSE_UUID = bluetooth.UUID(0x181A)
# org.bluetooth.characteristic.temperature
_TEMP_UUID = bluetooth.UUID(0x2A6E)
_TEMP_CHAR = (
    _TEMP_UUID,
    bluetooth.FLAG_READ | bluetooth.FLAG_NOTIFY,
)
_ENV_SENSE_SERVICE = (
    _ENV_SENSE_UUID,
    (_TEMP_CHAR,),
)

class BLETemperatureCentral:
    def __init__(self, ble):
        self._ble = ble
        self._ble.active(True)
        self._ble.irq(self._irq)
        self._reset()
        self._led = Pin('LED', Pin.OUT)

    def _reset(self):
        # Cached name and address from a successful scan.
        self._name = None
        self._addr_type = None
        self._addr = None

        # Cached value (if we have one)
        self._value = None

        # Callbacks for completion of various operations.
        # These reset back to None after being invoked.
        self._scan_callback = None
        self._conn_callback = None
        self._read_callback = None

        # Persistent callback for when new data is notified from the device.
        self._notify_callback = None

        # Connected device.
        self._conn_handle = None
        self._start_handle = None
        self._end_handle = None
        self._value_handle = None

    def _irq(self, event, data):
        if event == _IRQ_SCAN_RESULT:
            addr_type, addr, adv_type, rssi, adv_data = data
            if adv_type in (_ADV_IND, _ADV_DIRECT_IND):
                type_list = decode_services(adv_data)
                if _ENV_SENSE_UUID in type_list:
                    # Found a potential device, remember it and stop scanning.
                    self._addr_type = addr_type
                    self._addr = bytes(addr)  # Note: addr buffer is owned by caller so need to copy it.
                    self._name = decode_name(adv_data) or "?"
                    self._ble.gap_scan(None)

        elif event == _IRQ_SCAN_DONE:
            if self._scan_callback:
                if self._addr:
                    # Found a device during the scan (and the scan was explicitly stopped).
                    self._scan_callback(self._addr_type, self._addr, self._name)
                    self._scan_callback = None
                else:
                    # Scan timed out.
                    self._scan_callback(None, None, None)

        elif event == _IRQ_PERIPHERAL_CONNECT:
            # Connect successful.
            conn_handle, addr_type, addr = data
            if addr_type == self._addr_type and addr == self._addr:
                self._conn_handle = conn_handle
                self._ble.gattc_discover_services(self._conn_handle)

        elif event == _IRQ_PERIPHERAL_DISCONNECT:
            # Disconnect (either initiated by us or the remote end).
            conn_handle, _, _ = data
            if conn_handle == self._conn_handle:
                # If it was initiated by us, it'll already be reset.
                self._reset()

        elif event == _IRQ_GATTC_SERVICE_RESULT:
            # Connected device returned a service.
            conn_handle, start_handle, end_handle, uuid = data
            if conn_handle == self._conn_handle and uuid == _ENV_SENSE_UUID:
                self._start_handle, self._end_handle = start_handle, end_handle

        elif event == _IRQ_GATTC_SERVICE_DONE:
            # Service query complete.
            if self._start_handle and self._end_handle:
                self._ble.gattc_discover_characteristics(
                    self._conn_handle, self._start_handle, self._end_handle
                )
            else:
                print("Failed to find environmental sensing service.")

        elif event == _IRQ_GATTC_CHARACTERISTIC_RESULT:
            # Connected device returned a characteristic.
            conn_handle, def_handle, value_handle, properties, uuid = data
            if conn_handle == self._conn_handle and uuid == _TEMP_UUID:
                self._value_handle = value_handle

        elif event == _IRQ_GATTC_CHARACTERISTIC_DONE:
            # Characteristic query complete.
            if self._value_handle:
                # We've finished connecting and discovering device, fire the connect callback.
                if self._conn_callback:
                    self._conn_callback()
            else:
                print("Failed to find temperature characteristic.")

        elif event == _IRQ_GATTC_READ_RESULT:
            # A read completed successfully.
            conn_handle, value_handle, char_data = data
            if conn_handle == self._conn_handle and value_handle == self._value_handle:
                self._update_value(char_data)
                if self._read_callback:
                    self._read_callback(self._value)
                    self._read_callback = None

        elif event == _IRQ_GATTC_READ_DONE:
            # Read completed (no-op).
            conn_handle, value_handle, status = data

        elif event == _IRQ_GATTC_NOTIFY:
            # The ble_temperature.py demo periodically notifies its value.
            conn_handle, value_handle, notify_data = data
            if conn_handle == self._conn_handle and value_handle == self._value_handle:
                self._update_value(notify_data)
                if self._notify_callback:
                    self._notify_callback(self._value)

    # Returns true if we've successfully connected and discovered characteristics.
    def is_connected(self):
        return self._conn_handle is not None and self._value_handle is not None

    # Find a device advertising the environmental sensor service.
    def scan(self, callback=None):
        self._addr_type = None
        self._addr = None
        self._scan_callback = callback
        self._ble.gap_scan(2000, 30000, 30000)

    # Connect to the specified device (otherwise use cached address from a scan).
    def connect(self, addr_type=None, addr=None, callback=None):
        self._addr_type = addr_type or self._addr_type
        self._addr = addr or self._addr
        self._conn_callback = callback
        if self._addr_type is None or self._addr is None:
            return False
        self._ble.gap_connect(self._addr_type, self._addr)
        return True

    # Disconnect from current device.
    def disconnect(self):
        if not self._conn_handle:
            return
        self._ble.gap_disconnect(self._conn_handle)
        self._reset()

    # Issues an (asynchronous) read, will invoke callback with data.
    def read(self, callback):
        if not self.is_connected():
            return
        self._read_callback = callback
        try:
            self._ble.gattc_read(self._conn_handle, self._value_handle)
        except OSError as error:
            print(error)

    # Sets a callback to be invoked when the device notifies us.
    def on_notify(self, callback):
        self._notify_callback = callback

    def _update_value(self, data):
        # Data is sint16 in degrees Celsius with a resolution of 0.01 degrees Celsius.
        try:
            self._value = struct.unpack("<h", data)[0] / 100
        except OSError as error:
            print(error)

    def value(self):
        return self._value

def sleep_ms_flash_led(self, flash_count, delay_ms):
    self._led.off()
    while(delay_ms > 0):
        for i in range(flash_count):            
            self._led.on()
            time.sleep_ms(100)
            self._led.off()
            time.sleep_ms(100)
            delay_ms -= 200
        time.sleep_ms(1000)
        delay_ms -= 1000

def print_temp(result):
    #print("read temp: %.2f degc" % result)
    temp_msg = ("read temp: %.2f degc" % result)
    client.publish(topic_pub, temp_msg)
    print(temp_msg)

def demo(ble, central):
    not_found = False

    def on_scan(addr_type, addr, name):
        if addr_type is not None:
            print("Found sensor: %s" % name)
            central.connect()
        else:
            nonlocal not_found
            not_found = True
            print("No sensor found.")

    central.scan(callback=on_scan)

    # Wait for connection...
    while not central.is_connected():
        time.sleep_ms(100)
        if not_found:
            return

    print("Connected")

    # Explicitly issue reads
    while central.is_connected():
        central.read(callback=print_temp)
        sleep_ms_flash_led(central, 2, 2000)

    print("Disconnected")

#W5x00 chip init
def w5x00_init():
    spi=SPI(0,2_000_000, mosi=Pin(19),miso=Pin(16),sck=Pin(18))
    nic = network.WIZNET5K(spi,Pin(17),Pin(20)) #spi,cs,reset pin
    nic.active(True)
    
    #None DHCP
    nic.ifconfig(('192.168.11.20','255.255.255.0','192.168.11.1','8.8.8.8'))
    
    #DHCP
    #nic.ifconfig('dhcp')
    print('IP address :', nic.ifconfig())
    
    while not nic.isconnected():
        time.sleep(1)
        print(nic.regs())

def mqtt_connect():
    client = MQTTClient(client_id, mqtt_server, keepalive=60)
    client.connect()
    print('Connected to %s MQTT Broker'%(mqtt_server))
    return client

#reconnect & reset
def reconnect():
    print('Failed to connected to MQTT Broker. Reconnecting...')
    time.sleep(5)
    machine.reset()

if __name__ == "__main__":
    w5x00_init()
    try:
        client = mqtt_connect()
        
        
    except OSError as e:
        reconnect()
        
    ble = bluetooth.BLE()
    central = BLETemperatureCentral(ble)
    while(True):
        demo(ble, central)
        
        #topic_msg = b"read temp: %.2f degc" % result
        sleep_ms_flash_led(central, 1, 10000) 
        time.sleep(3)

ble_advertising.py

MicroPython
# Helpers for generating BLE advertising payloads.

from micropython import const
import struct
import bluetooth

# Advertising payloads are repeated packets of the following form:
#   1 byte data length (N + 1)
#   1 byte type (see constants below)
#   N bytes type-specific data

_ADV_TYPE_FLAGS = const(0x01)
_ADV_TYPE_NAME = const(0x09)
_ADV_TYPE_UUID16_COMPLETE = const(0x3)
_ADV_TYPE_UUID32_COMPLETE = const(0x5)
_ADV_TYPE_UUID128_COMPLETE = const(0x7)
_ADV_TYPE_UUID16_MORE = const(0x2)
_ADV_TYPE_UUID32_MORE = const(0x4)
_ADV_TYPE_UUID128_MORE = const(0x6)
_ADV_TYPE_APPEARANCE = const(0x19)


# Generate a payload to be passed to gap_advertise(adv_data=...).
def advertising_payload(limited_disc=False, br_edr=False, name=None, services=None, appearance=0):
    payload = bytearray()

    def _append(adv_type, value):
        nonlocal payload
        payload += struct.pack("BB", len(value) + 1, adv_type) + value

    _append(
        _ADV_TYPE_FLAGS,
        struct.pack("B", (0x01 if limited_disc else 0x02) + (0x18 if br_edr else 0x04)),
    )

    if name:
        _append(_ADV_TYPE_NAME, name)

    if services:
        for uuid in services:
            b = bytes(uuid)
            if len(b) == 2:
                _append(_ADV_TYPE_UUID16_COMPLETE, b)
            elif len(b) == 4:
                _append(_ADV_TYPE_UUID32_COMPLETE, b)
            elif len(b) == 16:
                _append(_ADV_TYPE_UUID128_COMPLETE, b)

    # See org.bluetooth.characteristic.gap.appearance.xml
    if appearance:
        _append(_ADV_TYPE_APPEARANCE, struct.pack("<h", appearance))

    return payload


def decode_field(payload, adv_type):
    i = 0
    result = []
    while i + 1 < len(payload):
        if payload[i + 1] == adv_type:
            result.append(payload[i + 2 : i + payload[i] + 1])
        i += 1 + payload[i]
    return result


def decode_name(payload):
    n = decode_field(payload, _ADV_TYPE_NAME)
    return str(n[0], "utf-8") if n else ""


def decode_services(payload):
    services = []
    for u in decode_field(payload, _ADV_TYPE_UUID16_COMPLETE):
        services.append(bluetooth.UUID(struct.unpack("<h", u)[0]))
    for u in decode_field(payload, _ADV_TYPE_UUID32_COMPLETE):
        services.append(bluetooth.UUID(struct.unpack("<d", u)[0]))
    for u in decode_field(payload, _ADV_TYPE_UUID128_COMPLETE):
        services.append(bluetooth.UUID(u))
    return services


def demo():
    payload = advertising_payload(
        name="micropython",
        services=[bluetooth.UUID(0x181A), bluetooth.UUID("6E400001-B5A3-F393-E0A9-E50E24DCCA9E")],
    )
    print(payload)
    print(decode_name(payload))
    print(decode_services(payload))


if __name__ == "__main__":
    demo()

umqttsimple.py

MicroPython
import usocket as socket
import ustruct as struct
from ubinascii import hexlify


class MQTTException(Exception):
    pass


class MQTTClient:
    def __init__(
        self,
        client_id,
        server,
        port=0,
        user=None,
        password=None,
        keepalive=0,
        ssl=False,
        ssl_params={},
    ):
        if port == 0:
            port = 8883 if ssl else 1883
        self.client_id = client_id
        self.sock = None
        self.server = server
        self.port = port
        self.ssl = ssl
        self.ssl_params = ssl_params
        self.pid = 0
        self.cb = None
        self.user = user
        self.pswd = password
        self.keepalive = keepalive
        self.lw_topic = None
        self.lw_msg = None
        self.lw_qos = 0
        self.lw_retain = False

    def _send_str(self, s):
        self.sock.write(struct.pack("!H", len(s)))
        self.sock.write(s)

    def _recv_len(self):
        n = 0
        sh = 0
        while 1:
            b = self.sock.read(1)[0]
            n |= (b & 0x7F) << sh
            if not b & 0x80:
                return n
            sh += 7

    def set_callback(self, f):
        self.cb = f

    def set_last_will(self, topic, msg, retain=False, qos=0):
        assert 0 <= qos <= 2
        assert topic
        self.lw_topic = topic
        self.lw_msg = msg
        self.lw_qos = qos
        self.lw_retain = retain

    def connect(self, clean_session=True):
        self.sock = socket.socket()
        addr = socket.getaddrinfo(self.server, self.port)[0][-1]
        self.sock.connect(addr)
        if self.ssl:
            import ussl

            self.sock = ussl.wrap_socket(self.sock, **self.ssl_params)
        premsg = bytearray(b"\x10\0\0\0\0\0")
        msg = bytearray(b"\x04MQTT\x04\x02\0\0")

        sz = 10 + 2 + len(self.client_id)
        msg[6] = clean_session << 1
        if self.user is not None:
            sz += 2 + len(self.user) + 2 + len(self.pswd)
            msg[6] |= 0xC0
        if self.keepalive:
            assert self.keepalive < 65536
            msg[7] |= self.keepalive >> 8
            msg[8] |= self.keepalive & 0x00FF
        if self.lw_topic:
            sz += 2 + len(self.lw_topic) + 2 + len(self.lw_msg)
            msg[6] |= 0x4 | (self.lw_qos & 0x1) << 3 | (self.lw_qos & 0x2) << 3
            msg[6] |= self.lw_retain << 5

        i = 1
        while sz > 0x7F:
            premsg[i] = (sz & 0x7F) | 0x80
            sz >>= 7
            i += 1
        premsg[i] = sz

        self.sock.write(premsg, i + 2)
        self.sock.write(msg)
        # print(hex(len(msg)), hexlify(msg, ":"))
        self._send_str(self.client_id)
        if self.lw_topic:
            self._send_str(self.lw_topic)
            self._send_str(self.lw_msg)
        if self.user is not None:
            self._send_str(self.user)
            self._send_str(self.pswd)
        resp = self.sock.read(4)
        assert resp[0] == 0x20 and resp[1] == 0x02
        if resp[3] != 0:
            raise MQTTException(resp[3])
        return resp[2] & 1

    def disconnect(self):
        self.sock.write(b"\xe0\0")
        self.sock.close()

    def ping(self):
        self.sock.write(b"\xc0\0")

    def publish(self, topic, msg, retain=False, qos=0):
        pkt = bytearray(b"\x30\0\0\0")
        pkt[0] |= qos << 1 | retain
        sz = 2 + len(topic) + len(msg)
        if qos > 0:
            sz += 2
        assert sz < 2097152
        i = 1
        while sz > 0x7F:
            pkt[i] = (sz & 0x7F) | 0x80
            sz >>= 7
            i += 1
        pkt[i] = sz
        # print(hex(len(pkt)), hexlify(pkt, ":"))
        self.sock.write(pkt, i + 1)
        self._send_str(topic)
        if qos > 0:
            self.pid += 1
            pid = self.pid
            struct.pack_into("!H", pkt, 0, pid)
            self.sock.write(pkt, 2)
        self.sock.write(msg)
        if qos == 1:
            while 1:
                op = self.wait_msg()
                if op == 0x40:
                    sz = self.sock.read(1)
                    assert sz == b"\x02"
                    rcv_pid = self.sock.read(2)
                    rcv_pid = rcv_pid[0] << 8 | rcv_pid[1]
                    if pid == rcv_pid:
                        return
        elif qos == 2:
            assert 0

    def subscribe(self, topic, qos=0):
        assert self.cb is not None, "Subscribe callback is not set"
        pkt = bytearray(b"\x82\0\0\0")
        self.pid += 1
        struct.pack_into("!BH", pkt, 1, 2 + 2 + len(topic) + 1, self.pid)
        # print(hex(len(pkt)), hexlify(pkt, ":"))
        self.sock.write(pkt)
        self._send_str(topic)
        self.sock.write(qos.to_bytes(1, "little"))
        while 1:
            op = self.wait_msg()
            if op == 0x90:
                resp = self.sock.read(4)
                # print(resp)
                assert resp[1] == pkt[2] and resp[2] == pkt[3]
                if resp[3] == 0x80:
                    raise MQTTException(resp[3])
                return

    # Wait for a single incoming MQTT message and process it.
    # Subscribed messages are delivered to a callback previously
    # set by .set_callback() method. Other (internal) MQTT
    # messages processed internally.
    def wait_msg(self):
        res = self.sock.read(1)
        self.sock.setblocking(True)
        if res is None:
            return None
        if res == b"":
            raise OSError(-1)
        if res == b"\xd0":  # PINGRESP
            sz = self.sock.read(1)[0]
            assert sz == 0
            return None
        op = res[0]
        if op & 0xF0 != 0x30:
            return op
        sz = self._recv_len()
        topic_len = self.sock.read(2)
        topic_len = (topic_len[0] << 8) | topic_len[1]
        topic = self.sock.read(topic_len)
        sz -= topic_len + 2
        if op & 6:
            pid = self.sock.read(2)
            pid = pid[0] << 8 | pid[1]
            sz -= 2
        msg = self.sock.read(sz)
        self.cb(topic, msg)
        if op & 6 == 2:
            pkt = bytearray(b"\x40\x02\0\0")
            struct.pack_into("!H", pkt, 2, pid)
            self.sock.write(pkt)
        elif op & 6 == 4:
            assert 0
        return op

    # Checks whether a pending message from server is available.
    # If not, returns immediately with None. Otherwise, does
    # the same processing as wait_msg.
    def check_msg(self):
        self.sock.setblocking(False)
        return self.wait_msg()

Credits

Viktor Shin

Viktor Shin

10 projects • 6 followers
Business Development Manager at WIZnet

Comments