Hackster is hosting Hackster Holidays, Finale: Livestream & Giveaway Drawing. Watch previous episodes or stream live on Tuesday!Stream Hackster Holidays, Finale on Tuesday!
Fangzheng ZhouXi ChengDonghui Zhang
Published

Wake Word Detection

An embedded application that trained to recognize the words “yes” and “no”.

BeginnerShowcase (no instructions)2,233
Wake Word Detection

Things used in this project

Hardware components

Nano 33 BLE Sense
Arduino Nano 33 BLE Sense
×1

Software apps and online services

Arduino IDE
Arduino IDE

Story

Read more

Code

main.cpp

C/C++
#include <TensorFlowLite.h>

#include "main_functions.h"

#include "audio_provider.h"
#include "command_responder.h"
#include "feature_provider.h"
#include "micro_features_micro_model_settings.h"
#include "micro_features_tiny_conv_micro_features_model_data.h"
#include "recognize_commands.h"
#include "tensorflow/lite/experimental/micro/kernels/micro_ops.h"
#include "tensorflow/lite/experimental/micro/micro_error_reporter.h"
#include "tensorflow/lite/experimental/micro/micro_interpreter.h"
#include "tensorflow/lite/experimental/micro/micro_mutable_op_resolver.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/version.h"

// Globals, used for compatibility with Arduino-style sketches.
namespace {
tflite::ErrorReporter* error_reporter = nullptr;
const tflite::Model* model = nullptr;
tflite::MicroInterpreter* interpreter = nullptr;
TfLiteTensor* model_input = nullptr;
FeatureProvider* feature_provider = nullptr;
RecognizeCommands* recognizer = nullptr;
int32_t previous_time = 0;

// Create an area of memory to use for input, output, and intermediate arrays.
// The size of this will depend on the model you're using, and may need to be
// determined by experimentation.
constexpr int kTensorArenaSize = 10 * 1024;
uint8_t tensor_arena[kTensorArenaSize];
}  // namespace

// The name of this function is important for Arduino compatibility.
void setup() {
  // Set up logging. Google style is to avoid globals or statics because of
  // lifetime uncertainty, but since this has a trivial destructor it's okay.
  // NOLINTNEXTLINE(runtime-global-variables)
  static tflite::MicroErrorReporter micro_error_reporter;
  error_reporter = &micro_error_reporter;

  // Map the model into a usable data structure. This doesn't involve any
  // copying or parsing, it's a very lightweight operation.
  model = tflite::GetModel(g_tiny_conv_micro_features_model_data);
  if (model->version() != TFLITE_SCHEMA_VERSION) {
    error_reporter->Report(
        "Model provided is schema version %d not equal "
        "to supported version %d.",
        model->version(), TFLITE_SCHEMA_VERSION);
    return;
  }

  // Pull in only the operation implementations we need.
  // This relies on a complete list of all the ops needed by this graph.
  // An easier approach is to just use the AllOpsResolver, but this will
  // incur some penalty in code space for op implementations that are not
  // needed by this graph.
  //
  // tflite::ops::micro::AllOpsResolver resolver;
  // NOLINTNEXTLINE(runtime-global-variables)
  static tflite::MicroMutableOpResolver micro_mutable_op_resolver;
  micro_mutable_op_resolver.AddBuiltin(
      tflite::BuiltinOperator_DEPTHWISE_CONV_2D,
      tflite::ops::micro::Register_DEPTHWISE_CONV_2D());
  micro_mutable_op_resolver.AddBuiltin(
      tflite::BuiltinOperator_FULLY_CONNECTED,
      tflite::ops::micro::Register_FULLY_CONNECTED());
  micro_mutable_op_resolver.AddBuiltin(tflite::BuiltinOperator_SOFTMAX,
                                       tflite::ops::micro::Register_SOFTMAX());

  // Build an interpreter to run the model with.
  static tflite::MicroInterpreter static_interpreter(
      model, micro_mutable_op_resolver, tensor_arena, kTensorArenaSize,
      error_reporter);
  interpreter = &static_interpreter;

  // Allocate memory from the tensor_arena for the model's tensors.
  TfLiteStatus allocate_status = interpreter->AllocateTensors();
  if (allocate_status != kTfLiteOk) {
    error_reporter->Report("AllocateTensors() failed");
    return;
  }

  // Get information about the memory area to use for the model's input.
  model_input = interpreter->input(0);
  if ((model_input->dims->size != 4) || (model_input->dims->data[0] != 1) ||
      (model_input->dims->data[1] != kFeatureSliceCount) ||
      (model_input->dims->data[2] != kFeatureSliceSize) ||
      (model_input->type != kTfLiteUInt8)) {
    error_reporter->Report("Bad input tensor parameters in model");
    return;
  }

  // Prepare to access the audio spectrograms from a microphone or other source
  // that will provide the inputs to the neural network.
  // NOLINTNEXTLINE(runtime-global-variables)
  static FeatureProvider static_feature_provider(kFeatureElementCount,
                                                 model_input->data.uint8);
  feature_provider = &static_feature_provider;

  static RecognizeCommands static_recognizer(error_reporter);
  recognizer = &static_recognizer;

  previous_time = 0;
}

// The name of this function is important for Arduino compatibility.
void loop() {
  // Fetch the spectrogram for the current time.
  const int32_t current_time = LatestAudioTimestamp();
  int how_many_new_slices = 0;
  TfLiteStatus feature_status = feature_provider->PopulateFeatureData(
      error_reporter, previous_time, current_time, &how_many_new_slices);
  if (feature_status != kTfLiteOk) {
    error_reporter->Report("Feature generation failed");
    return;
  }
  previous_time = current_time;
  // If no new audio samples have been received since last time, don't bother
  // running the network model.
  if (how_many_new_slices == 0) {
    return;
  }

  // Run the model on the spectrogram input and make sure it succeeds.
  TfLiteStatus invoke_status = interpreter->Invoke();
  if (invoke_status != kTfLiteOk) {
    error_reporter->Report("Invoke failed");
    return;
  }

  // Obtain a pointer to the output tensor
  TfLiteTensor* output = interpreter->output(0);
  // Determine whether a command was recognized based on the output of inference
  const char* found_command = nullptr;
  uint8_t score = 0;
  bool is_new_command = false;
  TfLiteStatus process_status = recognizer->ProcessLatestResults(
      output, current_time, &found_command, &score, &is_new_command);
  if (process_status != kTfLiteOk) {
    error_reporter->Report("RecognizeCommands::ProcessLatestResults() failed");
    return;
  }
  // Do something based on the recognized command. The default implementation
  // just prints to the error console, but you should replace this with your
  // own function for a real application.
  RespondToCommand(error_reporter, current_time, found_command, score,
                   is_new_command);
}

command_responder

C/C++
#include "command_responder.h"

#include "Arduino.h"

// Toggles the built-in LED every inference, and lights a colored LED depending
// on which word was detected.
void RespondToCommand(tflite::ErrorReporter* error_reporter,
                      int32_t current_time, const char* found_command,
                      uint8_t score, bool is_new_command) {
  static bool is_initialized = false;
  if (!is_initialized) {
    pinMode(LED_BUILTIN, OUTPUT);
    // Pins for the built-in RGB LEDs on the Arduino Nano 33 BLE Sense
    pinMode(LEDR, OUTPUT);
    pinMode(LEDG, OUTPUT);
    pinMode(LEDB, OUTPUT);
    is_initialized = true;
  }
  static int32_t last_command_time = 0;
  static int count = 0;
  static int certainty = 220;

  if (is_new_command) {
    error_reporter->Report("Heard %s (%d) @%dms", found_command, score,
                           current_time);
    // If we hear a command, light up the appropriate LED.
    // Note: The RGB LEDs on the Arduino Nano 33 BLE
    // Sense are on when the pin is LOW, off when HIGH.
    if (found_command[0] == 'y') {
      last_command_time = current_time;
      digitalWrite(LEDG, LOW);  // Green for yes
    }

    if (found_command[0] == 'n') {
      last_command_time = current_time;
      digitalWrite(LEDR, LOW);  // Red for no
    }

    if (found_command[0] == 'u') {
      last_command_time = current_time;
      digitalWrite(LEDB, LOW);  // Blue for unknown
    }
  }

  // If last_command_time is non-zero but was >3 seconds ago, zero it
  // and switch off the LED.
  if (last_command_time != 0) {
    if (last_command_time < (current_time - 3000)) {
      last_command_time = 0;
      digitalWrite(LED_BUILTIN, LOW);
      digitalWrite(LEDR, HIGH);
      digitalWrite(LEDG, HIGH);
      digitalWrite(LEDB, HIGH);
    }
    // If it is non-zero but <3 seconds ago, do nothing.
    return;
  }

  // Otherwise, toggle the LED every time an inference is performed.
  ++count;
  if (count & 1) {
    digitalWrite(LED_BUILTIN, HIGH);
  } else {
    digitalWrite(LED_BUILTIN, LOW);
  }
}

model_settings

C/C++
#include "micro_features_micro_model_settings.h"

const char* kCategoryLabels[kCategoryCount] = {
    "silence",
    "unknown",
    "yes",
    "no",
};

Credits

Fangzheng Zhou
1 project • 0 followers
Xi Cheng
0 projects • 0 followers
Donghui Zhang
0 projects • 0 followers

Comments