Hardware components | ||||||
| × | 1 | ||||
| × | 1 | ||||
| × | 5 | ||||
Software apps and online services | ||||||
| ||||||
| ||||||
| ||||||
| ||||||
Hand tools and fabrication machines | ||||||
|
Everyone knows well what is google map and how its useful in finding shops, locations or routes etc. In Cities had seen people who checks the google map before starting to office, the reason is "Traffic" its painful and I personalty experienced that so we watch out the traffic condition based on that adjust the time.
Now the current situation is different, people forgot about traffic and started worried about the crowd. When we go out for shop or works we need to maintain distancing these days. If crowd is more people wont feel safely.
Lora Mapper, plots the map in important paces like shops, bustop, church, temple, play ground, metro stations and tourist places etc.
WhatisLoRA Mapper?
Lora Mapper, Its designed with LORA radio from ST micro, Also the board paired up with the NFC reader from ST micro. Reader is interfaced with SPI and it has ability to read/write the NFC tags. This is very simple setup and it can be installed on public places or shops/malls entry.
Whoever wants to enter into shop or other places they need to sign in with NFC tags by tapping. NFC tag will have unique ID for each person. Its used to collect the person information from cloud.
The head counts are reordered with in details, Active counts shows the current people counts in the place/store. If some one exists from the place the sensor(IR/Switch) decrements the active counter value. Total count holds the data on preset day or week. Also this setup has contactless temperature which detects the person temperature and sends the data along with nfc information.
This count and people information is send through LORA network and reaches the Helium cloud. Helium cloud is integrated with AWS to get receive topics over MQTT. This is handed with lambda function. Alexa Skills set are defined for any users to get the traffic details in particular places. SMS alerts are used to inform the particular departments about the people crowd.
I have used rerobots sandobox for testing the LORA since no coverage in India. the suport was really good from the hard-share.
Block Diagram:The tutorial and docs from the helium team really helped me to make AWS integration with Twilio API's.
I would like to write more here but the time is ticking... I will update some more details later.
The final working video is here.
/******************************************************************************
* \attention
*
* <h2><center>© COPYRIGHT 2019 STMicroelectronics</center></h2>
*
* Licensed under ST MYLIBERTY SOFTWARE LICENSE AGREEMENT (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* www.st.com/myliberty
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
* AND SPECIFICALLY DISCLAIMING THE IMPLIED WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/*! \file
*
* \author
*
* \brief Demo application
*
* This demo shows how to poll for several types of NFC cards/devices and how
* to exchange data with these devices, using the RFAL library.
*
* This demo does not fully implement the activities according to the standards,
* it performs the required to communicate with a card/device and retrieve
* its UID. Also blocking methods are used for data exchange which may lead to
* long periods of blocking CPU/MCU.
* For standard compliant example please refer to the Examples provided
* with the RFAL library.
*
*/
/*
******************************************************************************
* INCLUDES
******************************************************************************
*/
#include "demo.h"
#include "utils.h"
#include "rfal_nfc.h"
#include "oled_ssd1306.h"
#include "string.h"
#if DEMO_ENABLE_LISTEN_MODE
#include "demo_ce.h"
#endif /* DEMO_ENABLE_LISTEN_MODE */
/** @addtogroup X-CUBE-NFC6_Applications
* @{
*/
/** @addtogroup PollingTagDetect
* @{
*/
/** @addtogroup PTD_Demo
* @{
*/
/*
******************************************************************************
* GLOBAL DEFINES
******************************************************************************
*/
/** @defgroup PTD_Demo_Private_Define
* @{
*/
/* Definition of possible states the demo state machine could have */
#define DEMO_ST_NOTINIT 0 /*!< Demo State: Not initialized */
#define DEMO_ST_START_DISCOVERY 1 /*!< Demo State: Start Discovery */
#define DEMO_ST_DISCOVERY 2 /*!< Demo State: Discovery */
#define DEMO_NFCV_BLOCK_LEN 4 /*!< NFCV Block len */
#define DEMO_NFCV_USE_SELECT_MODE false /*!< NFCV demonstrate select mode */
/**
* @}
*/
/*
******************************************************************************
* GLOBAL MACROS
******************************************************************************
*/
/*
******************************************************************************
* LOCAL VARIABLES
******************************************************************************
*/
/** @defgroup PTD_Demo_Private_Variables
* @{
*/
#if DEMO_ENABLE_POLL_MODE
/* P2P communication data */
static uint8_t NFCID3[] = {0x01, 0xFE, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A};
static uint8_t GB[] = {0x46, 0x66, 0x6d, 0x01, 0x01, 0x11, 0x02, 0x02, 0x07, 0x80, 0x03, 0x02, 0x00, 0x03, 0x04, 0x01, 0x32, 0x07, 0x01, 0x03};
/* APDUs communication data */
static uint8_t ndefSelectApp[] = { 0x00, 0xA4, 0x04, 0x00, 0x07, 0xD2, 0x76, 0x00, 0x00, 0x85, 0x01, 0x01, 0x00 };
static uint8_t ccSelectFile[] = { 0x00, 0xA4, 0x00, 0x0C, 0x02, 0xE1, 0x03};
static uint8_t readBynary[] = { 0x00, 0xB0, 0x00, 0x00, 0x0F };
/*static uint8_t ppseSelectApp[] = { 0x00, 0xA4, 0x04, 0x00, 0x0E, 0x32, 0x50, 0x41, 0x59, 0x2E, 0x53, 0x59, 0x53, 0x2E, 0x44, 0x44, 0x46, 0x30, 0x31, 0x00 };*/
#if DEMO_ENABLE_P2P_MODE
/* P2P communication data */
static uint8_t ndefLLCPSYMM[] = {0x00, 0x00};
static uint8_t ndefInit[] = {0x05, 0x20, 0x06, 0x0F, 0x75, 0x72, 0x6E, 0x3A, 0x6E, 0x66, 0x63, 0x3A, 0x73, 0x6E, 0x3A, 0x73, 0x6E, 0x65, 0x70, 0x02, 0x02, 0x07, 0x80, 0x05, 0x01, 0x02};
static uint8_t ndefUriSTcom[] = {0x13, 0x20, 0x00, 0x10, 0x02, 0x00, 0x00, 0x00, 0x23, 0xc1, 0x01,
0x00, 0x00, 0x00, 0x1c, 0x55, 0x00, 0x68, 0x74, 0x74, 0x70, 0x3a,
0x2f, 0x2f, 0x77, 0x77, 0x77, 0x2e, 0x73, 0x74, 0x2e, 0x63, 0x6f, 0x6d,
0x2f, 0x73, 0x74, 0x32, 0x35, 0x2D, 0x64, 0x65, 0x6D, 0x6F };
#endif /* DEMO_ENABLE_P2P_MODE */
#endif /* DEMO_ENABLE_POLL_MODE */
#if DEMO_ENABLE_LISTEN_MODE
/* NFC-A CE config */
static uint8_t ceNFCA_NFCID[] = {0x02, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66}; /* NFCID / UID (7 bytes) */
static uint8_t ceNFCA_SENS_RES[] = {0x44, 0x00}; /* SENS_RES / ATQA */
static uint8_t ceNFCA_SEL_RES = 0x20; /* SEL_RES / SAK */
/* NFC-F CE config */
static uint8_t ceNFCF_nfcid2[] = {0x02, 0xFE, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66};
static uint8_t ceNFCF_SC[] = {0x12, 0xFC};
static uint8_t ceNFCF_SENSF_RES[] = {0x01, /* SENSF_RES */
0x02, 0xFE, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, /* NFCID2 */
0x00, 0x00, 0x00, 0x00, 0x00, 0x7F, 0x7F, 0x00, /* PAD0, PAD01, MRTIcheck, MRTIupdate, PAD2 */
0x00, 0x00 }; /* RD */
#endif /* DEMO_ENABLE_LISTEN_MODE */
static uint32_t active_count = 0;
static uint32_t total_count = 145;
static uint32_t index_count = 0;
static uint32_t timer_ticks = 0;
static uint8_t *card_list[10];
static uint8_t digits[4]={'0','0','0','0'};
/*
******************************************************************************
* LOCAL VARIABLES
******************************************************************************
*/
static rfalNfcDiscoverParam discParam;
static uint8_t state = DEMO_ST_NOTINIT;
/**
* @}
*/
/*
******************************************************************************
* LOCAL FUNCTION PROTOTYPES
******************************************************************************
*/
#if DEMO_ENABLE_POLL_MODE
#if DEMO_ENABLE_P2P_MODE
static void demoP2P( void );
#endif /* DEMO_ENABLE_P2P_MODE */
static void demoAPDU( void );
static void demoNfcv( rfalNfcvListenDevice *nfcvDev );
static void demoNfcf( rfalNfcfListenDevice *nfcfDev );
#endif /* DEMO_ENABLE_POLL_MODE */
#if DEMO_ENABLE_LISTEN_MODE
static void demoCE( rfalNfcDevice *nfcDev );
#endif /* DEMO_ENABLE_LISTEN_MODE */
static void demoNotif( rfalNfcState st );
ReturnCode demoTransceiveBlocking( uint8_t *txBuf, uint16_t txBufSize, uint8_t **rxBuf, uint16_t **rcvLen, uint32_t fwt );
/** @defgroup PTD_Demo_Private_Functions
* @{
*/
/*!
*****************************************************************************
* \brief Demo Notification
*
* This function receives the event notifications from RFAL
*****************************************************************************
*/
static void demoNotif( rfalNfcState st )
{
uint8_t devCnt;
rfalNfcDevice *dev;
if( st == RFAL_NFC_STATE_WAKEUP_MODE )
{
platformLog("Wake Up mode started \r\n");
}
else if( st == RFAL_NFC_STATE_POLL_TECHDETECT )
{
platformLog("Wake Up mode terminated. Polling for devices \r\n");
}
else if( st == RFAL_NFC_STATE_POLL_SELECT )
{
/* Multiple devices were found, activate first of them */
rfalNfcGetDevicesFound( &dev, &devCnt );
rfalNfcSelect( 0 );
platformLog("Multiple Tags detected: %d \r\n", devCnt);
}
}
/*!
*****************************************************************************
* \brief Demo Ini
*
* This function Initializes the required layers for the demo
*
* \return true : Initialization ok
* \return false : Initialization failed
*****************************************************************************
*/
bool demoIni( void )
{
ReturnCode err;
err = rfalNfcInitialize();
if( err == ERR_NONE )
{
discParam.compMode = RFAL_COMPLIANCE_MODE_NFC;
discParam.devLimit = 1U;
discParam.nfcfBR = RFAL_BR_212;
discParam.ap2pBR = RFAL_BR_424;
#if DEMO_ENABLE_POLL_MODE
ST_MEMCPY( &discParam.nfcid3, NFCID3, sizeof(NFCID3) );
ST_MEMCPY( &discParam.GB, GB, sizeof(GB) );
discParam.GBLen = sizeof(GB);
#endif /* DEMO_ENABLE_POLL_MODE */
discParam.notifyCb = demoNotif;
discParam.totalDuration = 1000U;
discParam.wakeupEnabled = false;
discParam.wakeupConfigDefault = true;
#if DEMO_ENABLE_POLL_MODE
discParam.techs2Find = ( RFAL_NFC_POLL_TECH_A | RFAL_NFC_POLL_TECH_B | RFAL_NFC_POLL_TECH_F | RFAL_NFC_POLL_TECH_V | RFAL_NFC_POLL_TECH_ST25TB );
#if DEMO_ENABLE_P2P_MODE
discParam.techs2Find |= RFAL_NFC_POLL_TECH_AP2P;
#endif /* DEMO_ENABLE_P2P_MODE */
#else
discParam.techs2Find = RFAL_NFC_TECH_NONE;
#endif /* DEMO_ENABLE_POLL_MODE */
#if DEMO_ENABLE_LISTEN_MODE
/* Set configuration for NFC-A CE */
ST_MEMCPY( discParam.lmConfigPA.SENS_RES, ceNFCA_SENS_RES, RFAL_LM_SENS_RES_LEN ); /* Set SENS_RES / ATQA */
ST_MEMCPY( discParam.lmConfigPA.nfcid, ceNFCA_NFCID, sizeof(ceNFCA_NFCID) ); /* Set NFCID / UID */
discParam.lmConfigPA.nfcidLen = RFAL_LM_NFCID_LEN_07; /* Set NFCID length to 7 bytes */
discParam.lmConfigPA.SEL_RES = ceNFCA_SEL_RES; /* Set SEL_RES / SAK */
/* Set configuration for NFC-F CE */
ST_MEMCPY( discParam.lmConfigPF.SC, ceNFCF_SC, RFAL_LM_SENSF_SC_LEN ); /* Set System Code */
ST_MEMCPY( &ceNFCF_SENSF_RES[RFAL_NFCF_LENGTH_LEN], ceNFCF_nfcid2, RFAL_LM_SENSF_RES_LEN ); /* Load NFCID2 on SENSF_RES */
ST_MEMCPY( discParam.lmConfigPF.SENSF_RES, ceNFCF_SENSF_RES, sizeof(ceNFCF_SENSF_RES) ); /* Set SENSF_RES / Poll Response */
discParam.techs2Find |= ( RFAL_NFC_LISTEN_TECH_A | RFAL_NFC_LISTEN_TECH_F );
#endif /* DEMO_ENABLE_LISTEN_MODE */
state = DEMO_ST_START_DISCOVERY;
return true;
}
return false;
}
/*!
*****************************************************************************
* \brief Demo Cycle
*
* This function executes the demo state machine.
* It must be called periodically
*****************************************************************************
*/
void demoCycle( void )
{
static rfalNfcDevice *nfcDevice;
rfalNfcWorker(); /* Run RFAL worker periodically */
/*******************************************************************************/
/* Check if USER button is pressed */
if( platformGpioIsLow(PLATFORM_USER_BUTTON_PORT, PLATFORM_USER_BUTTON_PIN))
{
// discParam.wakeupEnabled = !discParam.wakeupEnabled; /* enable/disable wakeup */
// state = DEMO_ST_START_DISCOVERY; /* restart loop */
//platformLog("Toggling Wake Up mode %s\r\n", discParam.wakeupEnabled ? "ON": "OFF");
/* Debounce button */
while( platformGpioIsLow(PLATFORM_USER_BUTTON_PORT, PLATFORM_USER_BUTTON_PIN) );
active_count--;
if(active_count<=0) active_count = 0;
}
switch( state )
{
/*******************************************************************************/
case DEMO_ST_START_DISCOVERY:
platformLedOff(PLATFORM_LED_A_PORT, PLATFORM_LED_A_PIN);
platformLedOff(PLATFORM_LED_B_PORT, PLATFORM_LED_B_PIN);
platformLedOff(PLATFORM_LED_F_PORT, PLATFORM_LED_F_PIN);
platformLedOff(PLATFORM_LED_V_PORT, PLATFORM_LED_V_PIN);
platformLedOff(PLATFORM_LED_AP2P_PORT, PLATFORM_LED_AP2P_PIN);
platformLedOff(PLATFORM_LED_FIELD_PORT, PLATFORM_LED_FIELD_PIN);
rfalNfcDeactivate( false );
rfalNfcDiscover( &discParam );
state = DEMO_ST_DISCOVERY;
break;
/*******************************************************************************/
case DEMO_ST_DISCOVERY:
if( rfalNfcIsDevActivated( rfalNfcGetState() ) )
{
rfalNfcGetActiveDevice( &nfcDevice );
switch( nfcDevice->type )
{
#if DEMO_ENABLE_POLL_MODE
/*******************************************************************************/
case RFAL_NFC_LISTEN_TYPE_NFCA:
platformLedOn(PLATFORM_LED_A_PORT, PLATFORM_LED_A_PIN);
switch( nfcDevice->dev.nfca.type )
{
case RFAL_NFCA_T1T:
platformLog("ISO14443A/Topaz (NFC-A T1T) TAG found. UID: %s\r\n", hex2Str( nfcDevice->nfcid, nfcDevice->nfcidLen ) );
break;
case RFAL_NFCA_T2T:
platformLog("ISO14443A (NFC-A T1T) card found. UID: %s\r\n", hex2Str( nfcDevice->nfcid, nfcDevice->nfcidLen ) );
if( strcmp(card_list[index_count], hex2Str( nfcDevice->nfcid, nfcDevice->nfcidLen)) != 0)
{
index_count++;
total_count++;
active_count++;
}
if(index_count>9) index_count = 0;
digits[0] = active_count/1000 + '0';
digits[2] = (active_count/100)%10 + '0';
digits[3] = (active_count/10)%10 + '0';
digits[4] = active_count%10 + '0';
oled_ssd1306_write_text(3,48,digits);
digits[0] = total_count/1000 + '0';
digits[2] = (total_count/100)%10 + '0';
digits[3] = (total_count/10)%10 + '0';
digits[4] = total_count%10 + '0';
oled_ssd1306_write_text(6,48,digits);
HAL_Delay(2000);
memcpy(card_list[index_count],hex2Str( nfcDevice->nfcid, nfcDevice->nfcidLen ),nfcDevice->nfcidLen);
#if 0
if( strcmp("04E814722A6280", hex2Str( nfcDevice->nfcid, nfcDevice->nfcidLen)) == 0)
{
oled_ssd1306_write_text(0,4,"LORA PAY");
oled_ssd1306_write_text(3,12," 300 RS");
oled_ssd1306_write_mtext(6,0,"processing payment..");
}
else if(strcmp("049D11722A6280", hex2Str( nfcDevice->nfcid, nfcDevice->nfcidLen)) == 0)
{
oled_ssd1306_write_text(0,4,"LORA MSG");
oled_ssd1306_write_text(3,12," SMS");
oled_ssd1306_write_mtext(6,0,"sending message..");
}
else if(strcmp("04BD12722A6280", hex2Str( nfcDevice->nfcid, nfcDevice->nfcidLen)) == 0)
{
oled_ssd1306_write_text(0,4,"LORA LED");
oled_ssd1306_write_text(3,6,"CONTROL");
oled_ssd1306_write_mtext(6,0,"sending command..");
}
else
{
oled_ssd1306_write_text(3,12,"100 RS");
oled_ssd1306_write_mtext(5,4,"processing payment..");
}
#endif
break;
case RFAL_NFCA_T4T:
platformLog("NFCA Passive ISO-DEP device found. UID: %s\r\n", hex2Str( nfcDevice->nfcid, nfcDevice->nfcidLen ) );
demoAPDU();
break;
#if DEMO_ENABLE_P2P_MODE
case RFAL_NFCA_T4T_NFCDEP:
case RFAL_NFCA_NFCDEP:
platformLog("NFCA Passive P2P device found. NFCID: %s\r\n", hex2Str( nfcDevice->nfcid, nfcDevice->nfcidLen ) );
demoP2P();
break;
#endif /* DEMO_ENABLE_P2P_MODE */
default:
platformLog("ISO14443A/NFC-A card found. UID: %s\r\n", hex2Str( nfcDevice->nfcid, nfcDevice->nfcidLen ) );
break;
}
break;
/*******************************************************************************/
case RFAL_NFC_LISTEN_TYPE_NFCB:
platformLog("ISO14443B/NFC-B card found. UID: %s\r\n", hex2Str( nfcDevice->nfcid, nfcDevice->nfcidLen ) );
platformLedOn(PLATFORM_LED_B_PORT, PLATFORM_LED_B_PIN);
if( rfalNfcbIsIsoDepSupported( &nfcDevice->dev.nfcb ) )
{
demoAPDU();
}
break;
/*******************************************************************************/
case RFAL_NFC_LISTEN_TYPE_NFCF:
#if DEMO_ENABLE_P2P_MODE
if( rfalNfcfIsNfcDepSupported( &nfcDevice->dev.nfcf ) )
{
platformLog("NFCF Passive P2P device found. NFCID: %s\r\n", hex2Str( nfcDevice->nfcid, nfcDevice->nfcidLen ) );
demoP2P();
}
else
#endif /* DEMO_ENABLE_P2P_MODE */
{
platformLog("Felica/NFC-F card found. UID: %s\r\n", hex2Str( nfcDevice->nfcid, nfcDevice->nfcidLen ));
demoNfcf( &nfcDevice->dev.nfcf );
}
platformLedOn(PLATFORM_LED_F_PORT, PLATFORM_LED_F_PIN);
break;
/*******************************************************************************/
case RFAL_NFC_LISTEN_TYPE_NFCV:
{
uint8_t devUID[RFAL_NFCV_UID_LEN];
ST_MEMCPY( devUID, nfcDevice->nfcid, nfcDevice->nfcidLen ); /* Copy the UID into local var */
REVERSE_BYTES( devUID, RFAL_NFCV_UID_LEN ); /* Reverse the UID for display purposes */
platformLog("ISO15693/NFC-V card found. UID: %s\r\n", hex2Str(devUID, RFAL_NFCV_UID_LEN));
platformLedOn(PLATFORM_LED_V_PORT, PLATFORM_LED_V_PIN);
demoNfcv( &nfcDevice->dev.nfcv );
}
break;
/*******************************************************************************/
case RFAL_NFC_LISTEN_TYPE_ST25TB:
platformLog("ST25TB card found. UID: %s\r\n", hex2Str( nfcDevice->nfcid, nfcDevice->nfcidLen ));
platformLedOn(PLATFORM_LED_B_PORT, PLATFORM_LED_B_PIN);
break;
/*******************************************************************************/
#if DEMO_ENABLE_P2P_MODE
case RFAL_NFC_LISTEN_TYPE_AP2P:
platformLog("NFC Active P2P device found. NFCID3: %s\r\n", hex2Str(nfcDevice->nfcid, nfcDevice->nfcidLen));
platformLedOn(PLATFORM_LED_AP2P_PORT, PLATFORM_LED_AP2P_PIN);
demoP2P();
break;
#endif /* DEMO_ENABLE_P2P_MODE */
#endif /* DEMO_ENABLE_POLL_MODE */
/*******************************************************************************/
#if DEMO_ENABLE_LISTEN_MODE
case RFAL_NFC_POLL_TYPE_NFCA:
case RFAL_NFC_POLL_TYPE_NFCF:
platformLog("Activated in CE %s mode.\r\n", (nfcDevice->type == RFAL_NFC_POLL_TYPE_NFCA) ? "NFC-A" : "NFC-F");
platformLedOn( ((nfcDevice->type == RFAL_NFC_POLL_TYPE_NFCA) ? PLATFORM_LED_A_PORT : PLATFORM_LED_F_PORT),
((nfcDevice->type == RFAL_NFC_POLL_TYPE_NFCA) ? PLATFORM_LED_A_PIN : PLATFORM_LED_F_PIN) );
demoCE( nfcDevice );
break;
#endif /* DEMO_ENABLE_LISTEN_MODE */
/*******************************************************************************/
default:
break;
}
rfalNfcDeactivate( false );
platformDelay( 500 );
state = DEMO_ST_START_DISCOVERY;
}
break;
/*******************************************************************************/
case DEMO_ST_NOTINIT:
default:
break;
}
}
#if DEMO_ENABLE_LISTEN_MODE
static void demoCE( rfalNfcDevice *nfcDev )
{
ReturnCode err = ERR_NONE;
uint8_t *rxData;
uint16_t *rcvLen;
uint8_t txBuf[100];
uint16_t txLen;
demoCeInit( ceNFCF_nfcid2 );
do
{
rfalNfcWorker();
switch( rfalNfcGetState() )
{
case RFAL_NFC_STATE_ACTIVATED:
err = demoTransceiveBlocking( NULL, 0, &rxData, &rcvLen, 0);
break;
case RFAL_NFC_STATE_DATAEXCHANGE:
case RFAL_NFC_STATE_DATAEXCHANGE_DONE:
txLen = ( (nfcDev->type == RFAL_NFC_POLL_TYPE_NFCA) ? demoCeT4T( rxData, *rcvLen, txBuf, sizeof(txBuf) ): demoCeT3T( rxData, *rcvLen, txBuf, sizeof(txBuf) ) );
err = demoTransceiveBlocking( txBuf, txLen, &rxData, &rcvLen, RFAL_FWT_NONE );
break;
case RFAL_NFC_STATE_LISTEN_SLEEP:
default:
break;
}
}
while( (err == ERR_NONE) || (err == ERR_SLEEP_REQ) );
}
#endif /* DEMO_ENABLE_LISTEN_MODE */
#if DEMO_ENABLE_POLL_MODE
/*!
*****************************************************************************
* \brief Demo NFC-F
*
* Example how to exchange read and write blocks on a NFC-F tag
*
*****************************************************************************
*/
static void demoNfcf( rfalNfcfListenDevice *nfcfDev )
{
ReturnCode err;
uint8_t buf[ (RFAL_NFCF_NFCID2_LEN + RFAL_NFCF_CMD_LEN + (3*RFAL_NFCF_BLOCK_LEN)) ];
uint16_t rcvLen;
rfalNfcfServ srv = RFAL_NFCF_SERVICECODE_RDWR;
rfalNfcfBlockListElem bl[3];
rfalNfcfServBlockListParam servBlock;
servBlock.numServ = 1; /* Only one Service to be used */
servBlock.servList = &srv; /* Service Code: NDEF is Read/Writeable */
servBlock.numBlock = 1; /* Only one block to be used */
servBlock.blockList = bl;
bl[0].conf = RFAL_NFCF_BLOCKLISTELEM_LEN; /* Two-byte Block List Element */
bl[0].blockNum = 0x0001; /* Block: NDEF Data */
err = rfalNfcfPollerCheck( nfcfDev->sensfRes.NFCID2, &servBlock, buf, sizeof(buf), &rcvLen);
platformLog(" Check Block: %s Data: %s \r\n", (err != ERR_NONE) ? "FAIL": "OK", (err != ERR_NONE) ? "" : hex2Str( &buf[1], RFAL_NFCF_BLOCK_LEN) );
#if 0 /* Writing example */
uint8_t wrData[] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF };
err = rfalNfcfPollerUpdate( nfcfDev->sensfRes.NFCID2, &servBlock, buf , sizeof(buf), wrData, buf, sizeof(buf) );
platformLog(" Update Block: %s Data: %s \r\n", (err != ERR_NONE) ? "FAIL": "OK", (err != ERR_NONE) ? "" : hex2Str( wrData, RFAL_NFCF_BLOCK_LEN) );
err = rfalNfcfPollerCheck( nfcfDev->sensfRes.NFCID2, &servBlock, buf, sizeof(buf), &rcvLen);
platformLog(" Check Block: %s Data: %s \r\n", (err != ERR_NONE) ? "FAIL": "OK", (err != ERR_NONE) ? "" : hex2Str( &buf[1], RFAL_NFCF_BLOCK_LEN) );
#endif
}
/*!
*****************************************************************************
* \brief Demo NFC-V Exchange
*
* Example how to exchange read and write blocks on a NFC-V tag
*
*****************************************************************************
*/
static void demoNfcv( rfalNfcvListenDevice *nfcvDev )
{
ReturnCode err;
uint16_t rcvLen;
uint8_t blockNum = 1;
uint8_t rxBuf[ 1 + DEMO_NFCV_BLOCK_LEN + RFAL_CRC_LEN ]; /* Flags + Block Data + CRC */
uint8_t * uid;
#if DEMO_ENABLE_POLL_WRITE_TAG
uint8_t wrData[DEMO_NFCV_BLOCK_LEN] = { 0x11, 0x22, 0x33, 0x99 }; /* Write block example */
#endif /* DEMO_ENABLE_POLL_WRITE_TAG */
uid = nfcvDev->InvRes.UID;
#if DEMO_NFCV_USE_SELECT_MODE
/*
* Activate selected state
*/
err = rfalNfcvPollerSelect(RFAL_NFCV_REQ_FLAG_DEFAULT, nfcvDev->InvRes.UID );
platformLog(" Select %s \r\n", (err != ERR_NONE) ? "FAIL (revert to addressed mode)": "OK" );
if( err == ERR_NONE )
{
uid = NULL;
}
#endif
/*
* Read block using Read Single Block command
* with addressed mode (uid != NULL) or selected mode (uid == NULL)
*/
err = rfalNfcvPollerReadSingleBlock(RFAL_NFCV_REQ_FLAG_DEFAULT, uid, blockNum, rxBuf, sizeof(rxBuf), &rcvLen);
platformLog(" Read Block: %s %s\r\n", (err != ERR_NONE) ? "FAIL": "OK Data:", (err != ERR_NONE) ? "" : hex2Str( &rxBuf[1], DEMO_NFCV_BLOCK_LEN));
#if DEMO_ENABLE_POLL_WRITE_TAG /* Writing example */
err = rfalNfcvPollerWriteSingleBlock(RFAL_NFCV_REQ_FLAG_DEFAULT, uid, blockNum, wrData, sizeof(wrData));
platformLog(" Write Block: %s Data: %s\r\n", (err != ERR_NONE) ? "FAIL": "OK", hex2Str( wrData, DEMO_NFCV_BLOCK_LEN) );
err = rfalNfcvPollerReadSingleBlock(RFAL_NFCV_REQ_FLAG_DEFAULT, uid, blockNum, rxBuf, sizeof(rxBuf), &rcvLen);
platformLog(" Read Block: %s %s\r\n", (err != ERR_NONE) ? "FAIL": "OK Data:", (err != ERR_NONE) ? "" : hex2Str( &rxBuf[1], DEMO_NFCV_BLOCK_LEN));
#endif /* DEMO_ENABLE_POLL_WRITE_TAG */
}
#if DEMO_ENABLE_P2P_MODE
/*!
*****************************************************************************
* \brief Demo P2P Exchange
*
* Sends a NDEF URI record 'http://www.ST.com' via NFC-DEP (P2P) protocol.
*
* This method sends a set of static predefined frames which tries to establish
* a LLCP connection, followed by the NDEF record, and then keeps sending
* LLCP SYMM packets to maintain the connection.
*
*
*****************************************************************************
*/
void demoP2P( void )
{
uint16_t *rxLen;
uint8_t *rxData;
ReturnCode err;
platformLog(" Initalize device .. ");
err = demoTransceiveBlocking( ndefInit, sizeof(ndefInit), &rxData, &rxLen, RFAL_FWT_NONE);
if( err != ERR_NONE )
{
platformLog("failed.");
return;
}
platformLog("succeeded.\r\n");
platformLog(" Push NDEF Uri: www.ST.com .. ");
err = demoTransceiveBlocking( ndefUriSTcom, sizeof(ndefUriSTcom), &rxData, &rxLen, RFAL_FWT_NONE);
if( err != ERR_NONE )
{
platformLog("failed.");
return;
}
platformLog("succeeded.\r\n");
platformLog(" Device present, maintaining connection ");
while(err == ERR_NONE)
{
err = demoTransceiveBlocking( ndefLLCPSYMM, sizeof(ndefLLCPSYMM), &rxData, &rxLen, RFAL_FWT_NONE);
platformLog(".");
platformDelay(50);
}
platformLog("\r\n Device removed.\r\n");
}
#endif /* DEMO_ENABLE_P2P_MODE */
/*!
*****************************************************************************
* \brief Demo APDUs Exchange
*
* Example how to exchange a set of predefined APDUs with PICC. The NDEF
* application will be selected and then CC will be selected and read.
*
*****************************************************************************
*/
void demoAPDU( void )
{
ReturnCode err;
uint16_t *rxLen;
uint8_t *rxData;
/* Exchange APDU: NDEF Tag Application Select command */
err = demoTransceiveBlocking( ndefSelectApp, sizeof(ndefSelectApp), &rxData, &rxLen, RFAL_FWT_NONE );
platformLog(" Select NDEF Application: %s Data: %s\r\n", (err != ERR_NONE) ? "FAIL": "OK", hex2Str( rxData, *rxLen) );
if( (err == ERR_NONE) && rxData[0] == 0x90 && rxData[1] == 0x00)
{
/* Exchange APDU: Select Capability Container File */
err = demoTransceiveBlocking( ccSelectFile, sizeof(ccSelectFile), &rxData, &rxLen, RFAL_FWT_NONE );
platformLog(" Select CC: %s Data: %s\r\n", (err != ERR_NONE) ? "FAIL": "OK", hex2Str( rxData, *rxLen) );
/* Exchange APDU: Read Capability Container File */
err = demoTransceiveBlocking( readBynary, sizeof(readBynary), &rxData, &rxLen, RFAL_FWT_NONE );
platformLog(" Read CC: %s Data: %s\r\n", (err != ERR_NONE) ? "FAIL": "OK", hex2Str( rxData, *rxLen) );
}
}
#endif /* DEMO_ENABLE_POLL_MODE */
/*!
*****************************************************************************
* \brief Demo Blocking Transceive
*
* Helper function to send data in a blocking manner via the rfalNfc module
*
* \warning A protocol transceive handles long timeouts (several seconds),
* transmission errors and retransmissions which may lead to a long period of
* time where the MCU/CPU is blocked in this method.
* This is a demo implementation, for a non-blocking usage example please
* refer to the Examples available with RFAL
*
* \param[in] txBuf : data to be transmitted
* \param[in] txBufSize : size of the data to be transmited
* \param[out] rxData : location where the received data has been placed
* \param[out] rcvLen : number of data bytes received
* \param[in] fwt : FWT to be used (only for RF frame interface,
* otherwise use RFAL_FWT_NONE)
*
*
* \return ERR_PARAM : Invalid parameters
* \return ERR_TIMEOUT : Timeout error
* \return ERR_FRAMING : Framing error detected
* \return ERR_PROTO : Protocol error detected
* \return ERR_NONE : No error, activation successful
*
*****************************************************************************
*/
ReturnCode demoTransceiveBlocking( uint8_t *txBuf, uint16_t txBufSize, uint8_t **rxData, uint16_t **rcvLen, uint32_t fwt )
{
ReturnCode err;
err = rfalNfcDataExchangeStart( txBuf, txBufSize, rxData, rcvLen, fwt );
if( err == ERR_NONE )
{
do{
rfalNfcWorker();
err = rfalNfcDataExchangeGetStatus();
}
while( err == ERR_BUSY );
}
return err;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
/*******************************************************************************
* Copyright (c) 2015 Thomas Telkamp and Matthijs Kooijman
* Copyright (c) 2018 Terry Moore, MCCI
*
* Permission is hereby granted, free of charge, to anyone
* obtaining a copy of this document and accompanying files,
* to do whatever they want with them without any restriction,
* including, but not limited to, copying, modification and redistribution.
* NO WARRANTY OF ANY KIND IS PROVIDED.
*
* This example sends a valid LoRaWAN packet with payload "Hello,
* world!", using frequency and encryption settings matching those of
* the The Things Network. It's pre-configured for the Adafruit
* Feather M0 LoRa.
*
*******************************************************************************/
/*******************************************************************************
*
* For Helium developers, follow the Arduino Quickstart guide:
* https://developer.helium.com/device/arduino-quickstart
* TLDR: register your device on the console:
* https://console.helium.com/devices
*
* The App EUI (as lsb) and App Key (as msb) get inserted below.
*
*******************************************************************************/
#include <SPI.h>
#include <arduino_lmic.h>
#include <arduino_lmic_hal_boards.h>
#include <arduino_lmic_hal_configuration.h>
#include <arduino_lmic_lorawan_compliance.h>
#include <arduino_lmic_user_configuration.h>
#include <hal/hal.h>
#include <lmic.h>
//#include <Adafruit_seesaw.h>
#include <LSM6DSOSensor.h>
#include <LIS2DW12Sensor.h>
#include <LIS2MDLSensor.h>
#include <LPS22HHSensor.h>
#include <STTS751Sensor.h>
#include <HTS221Sensor.h>
#include <CayenneLPP.h>
#ifdef ARDUINO_SAM_DUE
#define DEV_I2C Wire1
#elif defined(ARDUINO_ARCH_STM32)
#define DEV_I2C Wire
#else
#define DEV_I2C Wire
#endif
// Sensors
LSM6DSOSensor *AccGyr;
LPS22HHSensor *PressTemp;
HTS221Sensor *HumTemp;
u4_t active_count=44;
u4_t total_count=1251;
// This should also be in little endian format
// These are user configurable values and Helium console permits anything
static const u1_t PROGMEM DEVEUI[8] = {0xD8, 0xB8, 0x3C, 0x8B, 0xA9, 0x45, 0xF0, 0x00};
void os_getDevEui(u1_t *buf) { memcpy_P(buf, DEVEUI, 8); }
// This is the "App EUI" in Helium. Make sure it is little-endian (lsb).
static const u1_t PROGMEM APPEUI[8] = {0x32, 0x57, 0xB0, 0x85, 0xAE, 0x56, 0x53, 0xE1};
void os_getArtEui(u1_t *buf) { memcpy_P(buf, APPEUI, 8); }
// This is the "App Key" in Helium. It is big-endian (msb).
static const u1_t PROGMEM APPKEY[16] = {0x24, 0x71, 0xC8, 0x2A, 0x57, 0x2A, 0x5A, 0x23, 0xAC, 0x1C, 0x6B, 0xCD, 0xE3, 0x66, 0xE4, 0x67};
void os_getDevKey(u1_t *buf) { memcpy_P(buf, APPKEY, 16); }
CayenneLPP lpp(8);
static osjob_t sendjob;
// Schedule TX every this many seconds (might become longer due to duty
// cycle limitations).
const unsigned TX_INTERVAL = 60;
// Pin mapping
//
// Adafruit BSPs are not consistent -- m0 express defs ARDUINO_SAMD_FEATHER_M0,
// m0 defs ADAFRUIT_FEATHER_M0
//
#if defined(ARDUINO_SAMD_FEATHER_M0) || defined(ADAFRUIT_FEATHER_M0)
// Pin mapping for Adafruit Feather M0 LoRa, etc.
const lmic_pinmap lmic_pins = {
.nss = 8,
.rxtx = LMIC_UNUSED_PIN,
.rst = 4,
.dio = {3, 6, LMIC_UNUSED_PIN},
.rxtx_rx_active = 0,
.rssi_cal = 8, // LBT cal for the Adafruit Feather M0 LoRa, in dB
.spi_freq = 8000000,
};
#elif defined(ARDUINO_AVR_FEATHER32U4)
// Pin mapping for Adafruit Feather 32u4 LoRa, etc.
// Just like Feather M0 LoRa, but uses SPI at 1MHz; and that's only
// because MCCI doesn't have a test board; probably higher frequencies
// will work.
const lmic_pinmap lmic_pins = {
.nss = 8,
.rxtx = LMIC_UNUSED_PIN,
.rst = 4,
.dio = {7, 6, LMIC_UNUSED_PIN},
.rxtx_rx_active = 0,
.rssi_cal = 8, // LBT cal for the Adafruit Feather 32U4 LoRa, in dB
.spi_freq = 1000000,
};
#elif defined(ARDUINO_CATENA_4551)
// Pin mapping for Murata module / Catena 4551
const lmic_pinmap lmic_pins = {
.nss = 7,
.rxtx = 29,
.rst = 8,
.dio =
{
25, // DIO0 (IRQ) is D25
26, // DIO1 is D26
27, // DIO2 is D27
},
.rxtx_rx_active = 1,
.rssi_cal = 10,
.spi_freq = 8000000 // 8MHz
};
#elif defined(MCCI_CATENA_4610)
#include "arduino_lmic_hal_boards.h"
const lmic_pinmap lmic_pins = *Arduino_LMIC::GetPinmap_Catena4610();
#elif defined(ARDUINO_DISCO_L072CZ_LRWAN1)
const lmic_pinmap lmic_pins = *Arduino_LMIC::GetPinmap_Disco_L072cz_Lrwan1();
#else
#error "Unknown target"
#endif
void readSensors()
{
// Read humidity and temperature.
float humidity = 0;
float temperature = 0;
HumTemp->GetHumidity(&humidity);
HumTemp->GetTemperature(&temperature);
// Read pressure and temperature.
float pressure = 0;
PressTemp->GetPressure(&pressure);
// Read accelerometer and gyroscope.
int32_t accelerometer[3];
int32_t gyroscope[3];
AccGyr->Get_X_Axes(accelerometer);
AccGyr->Get_G_Axes(gyroscope);
// Clear Payload
lpp.reset();
// Pack Packload
lpp.addTemperature(1, temperature);
lpp.addRelativeHumidity(2, humidity);
lpp.addBarometricPressure(3, pressure);
lpp.addAccelerometer(4, accelerometer[0], accelerometer[1], accelerometer[2]);
lpp.addGyrometer(5, gyroscope[0], gyroscope[1], gyroscope[2]);
// Debug Print Data
Serial.print("| Hum[%]: ");
Serial.print(humidity, 2);
Serial.print(" | Temp[C]: ");
Serial.print(temperature, 2);
Serial.print(" | Pres[hPa]: ");
Serial.print(pressure, 2);
Serial.print(" | Acc[mg]: ");
Serial.print(accelerometer[0]);
Serial.print(" ");
Serial.print(accelerometer[1]);
Serial.print(" ");
Serial.print(accelerometer[2]);
Serial.print(" | Gyr[mdps]: ");
Serial.print(gyroscope[0]);
Serial.print(" ");
Serial.print(gyroscope[1]);
Serial.print(" ");
Serial.print(gyroscope[2]);
}
void do_send(osjob_t *j)
{
// Check if there is not a current TX/RX job running
if (LMIC.opmode & OP_TXRXPEND)
{
Serial.println(F("OP_TXRXPEND, not sending"));
}
else
{
//total_count= 1251;
//active_count = 44;
//readSensors();
// Prepare upstream data transmission at the next possible time.
lpp.reset();
lpp.addDigitalInput(1,active_count);
lpp.addDigitalInput(2,total_count);
Serial.print(" | Active count: ");
Serial.print(active_count);
Serial.print(" | Total count: ");
Serial.print(total_count);
Serial.print(" |");
LMIC_setTxData2(1,lpp.getBuffer(), lpp.getSize(), 0);
Serial.println(F("Packet queued"));
}
// Next TX is scheduled after TX_COMPLETE event.
}
void onEvent(ev_t ev)
{
Serial.print(os_getTime());
Serial.print(": ");
switch (ev)
{
case EV_SCAN_TIMEOUT:
Serial.println(F("EV_SCAN_TIMEOUT"));
break;
case EV_BEACON_FOUND:
Serial.println(F("EV_BEACON_FOUND"));
break;
case EV_BEACON_MISSED:
Serial.println(F("EV_BEACON_MISSED"));
break;
case EV_BEACON_TRACKED:
Serial.println(F("EV_BEACON_TRACKED"));
break;
case EV_JOINING:
Serial.println(F("EV_JOINING"));
break;
case EV_JOIN_TXCOMPLETE:
Serial.println(F("EV_JOIN_TXCOMPLETE"));
break;
case EV_JOINED:
Serial.println(F("EV_JOINED"));
{
u4_t netid = 0;
devaddr_t devaddr = 0;
u1_t nwkKey[16];
u1_t artKey[16];
LMIC_getSessionKeys(&netid, &devaddr, nwkKey, artKey);
Serial.print("netid: ");
Serial.println(netid, DEC);
Serial.print("devaddr: ");
Serial.println(devaddr, HEX);
Serial.print("artKey: ");
for (size_t i = 0; i < sizeof(artKey); ++i)
{
if (i != 0)
Serial.print("-");
Serial.print(artKey[i], HEX);
}
Serial.println("");
Serial.print("nwkKey: ");
for (size_t i = 0; i < sizeof(nwkKey); ++i)
{
if (i != 0)
Serial.print("-");
Serial.print(nwkKey[i], HEX);
}
Serial.println("");
}
// Disable link check validation (automatically enabled
// during join, but because slow data rates change max TX
// size, we don't use it in this example.
LMIC_setLinkCheckMode(0);
break;
/*
|| This event is defined but not used in the code. No
|| point in wasting codespace on it.
||
|| case EV_RFU1:
|| Serial.println(F("EV_RFU1"));
|| break;
*/
case EV_JOIN_FAILED:
Serial.println(F("EV_JOIN_FAILED"));
break;
case EV_REJOIN_FAILED:
Serial.println(F("EV_REJOIN_FAILED"));
break;
break;
case EV_TXCOMPLETE:
Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
if (LMIC.txrxFlags & TXRX_ACK)
Serial.println(F("Received ack"));
if (LMIC.dataLen)
{
Serial.println(F("Received "));
Serial.println(LMIC.dataLen);
Serial.println(F(" bytes of payload"));
total_count++;
active_count++;
}
// Schedule next transmission
os_setTimedCallback(&sendjob, os_getTime() + sec2osticks(TX_INTERVAL),
do_send);
break;
case EV_LOST_TSYNC:
Serial.println(F("EV_LOST_TSYNC"));
break;
case EV_RESET:
Serial.println(F("EV_RESET"));
break;
case EV_RXCOMPLETE:
// data received in ping slot
Serial.println(F("EV_RXCOMPLETE"));
break;
case EV_LINK_DEAD:
Serial.println(F("EV_LINK_DEAD"));
break;
case EV_LINK_ALIVE:
Serial.println(F("EV_LINK_ALIVE"));
break;
/*
|| This event is defined but not used in the code. No
|| point in wasting codespace on it.
||
|| case EV_SCAN_FOUND:
|| Serial.println(F("EV_SCAN_FOUND"));
|| break;
*/
case EV_TXSTART:
Serial.println(F("EV_TXSTART"));
break;
default:
Serial.print(F("Unknown event: "));
Serial.println((unsigned)ev);
break;
}
}
void setup()
{
// Initialize I2C bus.
DEV_I2C.begin();
AccGyr = new LSM6DSOSensor(&DEV_I2C);
AccGyr->Enable_X();
AccGyr->Enable_G();
PressTemp = new LPS22HHSensor(&DEV_I2C);
PressTemp->Enable();
HumTemp = new HTS221Sensor(&DEV_I2C);
HumTemp->Enable();
delay(5000);
while (!Serial)
;
Serial.begin(9600);
Serial.println(F("Starting"));
#if defined(ARDUINO_DISCO_L072CZ_LRWAN1)
SPI.setMOSI(RADIO_MOSI_PORT);
SPI.setMISO(RADIO_MISO_PORT);
SPI.setSCLK(RADIO_SCLK_PORT);
SPI.setSSEL(RADIO_NSS_PORT);
// SPI.begin();
#endif
#ifdef VCC_ENABLE
// For Pinoccio Scout boards
pinMode(VCC_ENABLE, OUTPUT);
digitalWrite(VCC_ENABLE, HIGH);
delay(1000);
#endif
// LMIC init
os_init();
// Reset the MAC state. Session and pending data transfers will be discarded.
LMIC_reset();
// allow much more clock error than the X/1000 default. See:
// https://github.com/mcci-catena/arduino-lorawan/issues/74#issuecomment-462171974
// https://github.com/mcci-catena/arduino-lmic/commit/42da75b56#diff-16d75524a9920f5d043fe731a27cf85aL633
// the X/1000 means an error rate of 0.1%; the above issue discusses using
// values up to 10%. so, values from 10 (10% error, the most lax) to 1000
// (0.1% error, the most strict) can be used.
LMIC_setClockError(1 * MAX_CLOCK_ERROR / 40);
LMIC_setLinkCheckMode(0);
LMIC_setDrTxpow(DR_SF8, 20);
LMIC_selectSubBand(1);
// Start job (sending automatically starts OTAA too)
do_send(&sendjob);
}
void loop() { os_runloop_once(); }
namespace Arduino_LMIC
{
class HalConfiguration_Disco_L072cz_Lrwan1_t : public HalConfiguration_t
{
public:
enum DIGITAL_PINS : uint8_t
{
PIN_SX1276_NSS = 37,
PIN_SX1276_NRESET = 33,
PIN_SX1276_DIO0 = 38,
PIN_SX1276_DIO1 = 39,
PIN_SX1276_DIO2 = 40,
PIN_SX1276_RXTX = 21,
};
virtual bool queryUsingTcxo(void) override { return false; };
};
// save some typing by bringing the pin numbers into scope
static HalConfiguration_Disco_L072cz_Lrwan1_t myConfig;
static const HalPinmap_t myPinmap = {
.nss = HalConfiguration_Disco_L072cz_Lrwan1_t::PIN_SX1276_NSS,
.rxtx = HalConfiguration_Disco_L072cz_Lrwan1_t::PIN_SX1276_RXTX,
.rst = HalConfiguration_Disco_L072cz_Lrwan1_t::PIN_SX1276_NRESET,
.dio =
{
HalConfiguration_Disco_L072cz_Lrwan1_t::PIN_SX1276_DIO0,
HalConfiguration_Disco_L072cz_Lrwan1_t::PIN_SX1276_DIO1,
HalConfiguration_Disco_L072cz_Lrwan1_t::PIN_SX1276_DIO2,
},
.rxtx_rx_active = 1,
.rssi_cal = 10,
.spi_freq = 8000000, /* 8MHz */
.pConfig = &myConfig};
}; // end namespace Arduino_LMIC
Comments