divesh dutt
Published

Anti Collision Device

I am working on a anti collision device using Lidar technology and stm32.Shoot me a text if anyone interested.

BeginnerWork in progress467
Anti Collision Device

Things used in this project

Hardware components

STM32 Nucleo-64 Board
STMicroelectronics STM32 Nucleo-64 Board
×1
tfmini lidar
×1
Jumper wires (generic)
Jumper wires (generic)
×1

Software apps and online services

STM32CUBEPROG
STMicroelectronics STM32CUBEPROG

Story

Read more

Code

main.c

C/C++
/* USER CODE BEGIN Header */
/**
 ******************************************************************************
 * @file           : main.c
 * @brief          : Main program body
 * @Author          :Divesh Dutt
 *
 * @Description:The main program gets data from UART2 of nucleo64 and displays the Hex data
 * to VCP(virtual port).I am using UART3 to connect Lidar to nucleo board.
 * In more advance scenario a graphical frontend could be used to add additional features.
 ******************************************************************************
 * @attention
 *
 * <h2><center>&copy; Copyright (c) 2021 STMicroelectronics.
 * All rights reserved.</center></h2>
 *
 * This software component is licensed by ST under BSD 3-Clause license,
 * the "License"; You may not use this file except in compliance with the
 * License. You may obtain a copy of the License at:
 *                        opensource.org/licenses/BSD-3-Clause
 *
 ******************************************************************************
 */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include<stdlib.h>
#include<stdio.h>
#include<string.h>
#define HEX_CONVERSION
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */


/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
UART_HandleTypeDef huart2;
UART_HandleTypeDef huart3;

/* USER CODE BEGIN PV */
//uint8_t index;
 volatile uint8_t rxBuffer[9];     //variable to receive data from lidar
 volatile uint8_t txBuffer[9];     //store to converted Hex data from rxBuffer
 volatile uint8_t quotient[9];
 volatile uint8_t temp[9];
uint8_t FrameReceive[9];


uint16_t distance;
uint8_t offset=120;
uint8_t scaling=10;
uint8_t strlimit=10;

volatile char recdflag;         //used to disable conversion while transfer in process
/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART2_UART_Init(void);
static void MX_USART3_UART_Init(void);
/* USER CODE BEGIN PFP */
uint8_t Checksum(uint8_t *data, uint8_t length);      //check the checksum of incoming frame
void string2hexString(char* input, char* output);
/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */
	 //  int len,j,loop;
  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_USART2_UART_Init();
  MX_USART3_UART_Init();
  /* USER CODE BEGIN 2 */


  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
	while (1)
	{

HAL_UART_Receive_IT(&huart3,(uint8_t *)rxBuffer,sizeof(rxBuffer));
if(recdflag)
{
	recdflag=0;
	for(int i = 0 ; i < 9 ; i++)
	{

#ifdef HEX_CONVERSION
		quotient[i]=rxBuffer[i];
		while(quotient[i]!=0)
		{
			temp[i]=quotient[i]%16;
			if(temp[i]<10)
			{
				temp[i]=temp[i]+48;
			}
			else
			{
				temp[i]=temp[i]+55;
			}
					txBuffer[i]=temp[i];
					quotient[i]=quotient[i]/16;
		}

#else
		sprintf((char*)(txBuffer+i),"%02X", rxBuffer[i]);
#endif


	}
	HAL_UART_Transmit(&huart2,(uint8_t *)&txBuffer, sizeof(txBuffer),100);
		HAL_Delay(1000);
		HAL_UART_Receive_IT(&huart3,(uint8_t *)&rxBuffer, sizeof(rxBuffer));

}
#if 0
		if(recdflag)
		{

			recdflag=0;
			if((rxBuffer=='Y')&&(index==0))
			{
				FrameReceive[index]=rxBuffer;
				index++;
			}
			else
			{
				if(FrameReceive[0]=='Y')
				{
					if(index<8)
					{
						FrameReceive[index]=rxBuffer;
						index++;
					}
					else
					{
						FrameReceive[index]=rxBuffer;
						if(FrameReceive[1]=='Y')
						{
							if(Checksum(FrameReceive,8))
							{
								distance= (uint16_t)(((FrameReceive[2] + (FrameReceive[3]*256))+offset)/scaling);

							}
						}
						for(uint8_t i=0;i<8;i++)
						{
							FrameReceive[i]=0;
						}
						index=0;
					}

				}

			}



		}
		/* USER CODE BEGIN 3 */

		/* USER CODE END 3 */
#endif

    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */

  /* USER CODE END 3 */
}
}
/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  RCC_OscInitStruct.PLL.PREDIV = RCC_PREDIV_DIV1;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
  PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART2|RCC_PERIPHCLK_USART3;
  PeriphClkInit.Usart2ClockSelection = RCC_USART2CLKSOURCE_PCLK1;
  PeriphClkInit.Usart3ClockSelection = RCC_USART3CLKSOURCE_PCLK1;
  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief USART2 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART2_UART_Init(void)
{

  /* USER CODE BEGIN USART2_Init 0 */

  /* USER CODE END USART2_Init 0 */

  /* USER CODE BEGIN USART2_Init 1 */

  /* USER CODE END USART2_Init 1 */
  huart2.Instance = USART2;
  huart2.Init.BaudRate = 9600;
  huart2.Init.WordLength = UART_WORDLENGTH_8B;
  huart2.Init.StopBits = UART_STOPBITS_1;
  huart2.Init.Parity = UART_PARITY_NONE;
  huart2.Init.Mode = UART_MODE_TX_RX;
  huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
  huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  if (HAL_UART_Init(&huart2) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART2_Init 2 */

  /* USER CODE END USART2_Init 2 */

}

/**
  * @brief USART3 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART3_UART_Init(void)
{

  /* USER CODE BEGIN USART3_Init 0 */

  /* USER CODE END USART3_Init 0 */

  /* USER CODE BEGIN USART3_Init 1 */

  /* USER CODE END USART3_Init 1 */
  huart3.Instance = USART3;
  huart3.Init.BaudRate = 115200;
  huart3.Init.WordLength = UART_WORDLENGTH_8B;
  huart3.Init.StopBits = UART_STOPBITS_1;
  huart3.Init.Parity = UART_PARITY_NONE;
  huart3.Init.Mode = UART_MODE_TX_RX;
  huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart3.Init.OverSampling = UART_OVERSAMPLING_16;
  huart3.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
  huart3.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  if (HAL_UART_Init(&huart3) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART3_Init 2 */

  /* USER CODE END USART3_Init 2 */

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOC_CLK_ENABLE();
  __HAL_RCC_GPIOF_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET);

  /*Configure GPIO pin : B1_Pin */
  GPIO_InitStruct.Pin = B1_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct);

  /*Configure GPIO pin : LD2_Pin */
  GPIO_InitStruct.Pin = LD2_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(LD2_GPIO_Port, &GPIO_InitStruct);

}

/* USER CODE BEGIN 4 */
//#if 0
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{

	recdflag = 1;

}

//Checksum is the sum of the first 8 bytes of actual data Checksum = Byte1 + Byte2 + ... + Byte8

uint8_t Checksum(uint8_t *data, uint8_t length)
{
	uint16_t  count;
	uint16_t  Sum = 0;

	for (count = 0; count < length; count++)
		Sum = Sum + data[count];
	return (Sum);
}
//function to convert ascii char[] to hex-string (char[])
void string2hexString(char* input, char* output)
{
    int loop;
    int i;

    i=0;
    loop=0;

    while(input[loop] != '\0')
    {
        sprintf((char*)(output+i),"%02X", input[loop]);
        loop+=1;
        i+=2;
    }
    //insert NULL at the end of the output string
    output[i++] = '\0';
}
/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
	/* User can add his own implementation to report the HAL error return state */
	__disable_irq();
	while (1)
	{
	}
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
	/* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

Anti collision device

The code for this project is here.

Credits

divesh dutt
2 projects • 4 followers
Contact

Comments

Please log in or sign up to comment.