Hardware components | ||||||
| × | 1 | ||||
| × | 1 | ||||
| × | 1 | ||||
Software apps and online services | ||||||
| ||||||
| ||||||
|
Story
"Prevention is better than cure" is one of the effective measures to prevent the spreading of COVID-19 and to protect mankind. Many researchers and doctors are working on medication and vaccination for corona.
COVID-19 spreads mostly by droplet infection when people cough or if we touch someone who is ill and then to our face (i.e rubbing eyes or nose). Ongoing pandemic shows that it is much more contagious and spreads fast. Depending on the infection spreading, we have two cases: Fast and Slow spread.
A fast pandemic will be terrible and will cost many lives. It occurs due to a rapid rate of infection because there are no countermeasures to slow it down. This is because, if the numbers of infected people get too large, healthcare systems become unable to handle it. We will lack resources such as medical staff or equipment like a ventilator.
To avoid the above situation, we need to do what we can to turn this into a slow pandemic. A pandemic can be slowed down only by the right responses, mainly in the early phase. In this phase, everyone who is sick can get treatment and there is no emergency point with flooded hospitals.
In this pandemic, we need to engineer our behavior as a vaccine. that is, "Not getting infected" and "Not infecting others". The best thing we can do is to wash our hands with soap or a hand sanitizer. The next best thing is social distancing.
To avoid getting infected or spreading it, It is essential to wear a face mask while going out from home especially to public places such as markets or hospitals.
About The Project
The system is designed to detect the faces and to determine whether the person wears a face mask or not. Using the above data, we can decide whether the concerned person can be allowed inside public places such as the market, or a hospital. This project can be used in the hospital, market, bus terminals, restaurants, and other public gatherings where the monitoring has to be done.
This project consists of a camera that will capture the image of the people entering public places and detect whether the person wears a face mask or not using their facial features.
The FaceMask Detection project was developed at the National Institute of Applied Science and Technology (INSAT) in September 2020.
Visit my personal portfolio: karembenchikha.me
Check the full Project on GitHub: https://github.com/KaremBenChikha/FaceMaskDetection/
A quick demo of the project (I used a simple green LED to simulate a door opening):
To build such a project, you have to follow 3 main steps:
Step 1
You will create a neural network model with TensorFlow and will train it on a dataset of both people who are wearing facemasks and people who are not.
The dataset can be downloaded from here: https://drive.google.com/file/d/1uKAOauSUqH6wtk_wfpSsjNpju1ralPOI/view?usp=sharing
Note that the algorithm runs on Jupyter notebooks and requires a lot of GPU power to train the model. However, if you execute my code without changing the Model settings, I can guarantee total confidence of 98%.
Step 2
Here, you will create a face recognition algorithm that will be able to detect facemasks on people's faces using the trained model in the previous step.
if you don't have the GPU power or the needed dependencies or knowledge to work with neural network models. I have included my pre-trained model that can be used in this step without going by step 1. name of the model fil: mask_detector.model
Step 3
Finally, you will add a simple Serial Command to the facemask detection algorithm that will order the Arduino to switch LED on or off based on the state of detection.
(you must also deploy the Arduino code on your Ardunio and do the correct wiring)
This project needs the following libraries:
TensorFlow - Keras - imutils - numpy - opencv - matplotlib - scipy - argparse - pyserial
{
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.2-final"
},
"orig_nbformat": 2,
"kernelspec": {
"name": "python38264bit514172ba080344d09aea60dc2269ee8d",
"display_name": "Python 3.8.2 64-bit"
}
},
"nbformat": 4,
"nbformat_minor": 2,
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"#Import Libraries"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from tensorflow.keras.preprocessing.image import ImageDataGenerator\n",
"from tensorflow.keras.applications import MobileNetV2\n",
"from tensorflow.keras.layers import AveragePooling2D\n",
"from tensorflow.keras.layers import Dropout\n",
"from tensorflow.keras.layers import Flatten\n",
"from tensorflow.keras.layers import Dense\n",
"from tensorflow.keras.layers import Input\n",
"from tensorflow.keras.models import Model\n",
"from tensorflow.keras.optimizers import Adam\n",
"from tensorflow.keras.applications.mobilenet_v2 import preprocess_input\n",
"from tensorflow.keras.preprocessing.image import img_to_array\n",
"from tensorflow.keras.preprocessing.image import load_img\n",
"from tensorflow.keras.utils import to_categorical\n",
"from sklearn.preprocessing import LabelBinarizer\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.metrics import classification_report\n",
"from imutils import paths\n",
"import matplotlib.pyplot as plot \n",
"import numpy as np \n",
"import os "
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"#Initialization with 20 Epochs and 32 Batches and set images' path"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"initLayer = 1e-4\n",
"epochs = 5\n",
"batch = 32"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"#SettingUp Image Data"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"directory = \"/home/karem/Documents/Python/FaceMaskDetection/dataset\"\n",
"categories = [\"withMask\", \"withoutMask\"]\n",
"data = []\n",
"labels = []\n",
"for category in categories:\n",
" path = os.path.join(directory, category)\n",
" for img in os.listdir(path):\n",
" \timg_path = os.path.join(path, img)\n",
" \timage = load_img(img_path, target_size=(224, 224))\n",
" \timage = img_to_array(image)\n",
" \timage = preprocess_input(image)\n",
" \tdata.append(image)\n",
" \tlabels.append(category)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"#Encode Data and Labels"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"lb = LabelBinarizer()\n",
"labels = lb.fit_transform(labels)\n",
"labels = to_categorical(labels)\n",
"data = np.array(data,dtype=\"float32\")\n",
"labels = np.array(labels)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"#Set 80% of Images for training and 20% for testing"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"(trainX,testX,trainY,testY) = train_test_split(data,labels,test_size=0.20,stratify=labels,random_state=20)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"aug = ImageDataGenerator(\n",
"\trotation_range=20,\n",
"\tzoom_range=0.15,\n",
"\twidth_shift_range=0.2,\n",
"\theight_shift_range=0.2,\n",
"\tshear_range=0.15,\n",
"\thorizontal_flip=True,\n",
"\tfill_mode=\"nearest\")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"#Load MibileNetV2 network"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"tags": []
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "WARNING:tensorflow:`input_shape` is undefined or non-square, or `rows` is not in [96, 128, 160, 192, 224]. Weights for input shape (224, 224) will be loaded as the default.\n"
}
],
"source": [
"baseModel = MobileNetV2(weights=\"imagenet\", include_top=False,\n",
"\tinput_tensor=Input(shape=(224, 224, 3)))"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"#Construct the head module"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"headModel = baseModel.output\n",
"headModel = AveragePooling2D(pool_size=(7, 7))(headModel)\n",
"headModel = Flatten(name=\"flatten\")(headModel)\n",
"headModel = Dense(128, activation=\"relu\")(headModel)\n",
"headModel = Dropout(0.5)(headModel)\n",
"headModel = Dense(2, activation=\"softmax\")(headModel)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"# Pace the head FC model on top of the base model (this will become the actual model we will train)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"model = Model(inputs=baseModel.input, outputs=headModel)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"#Loop over all layers in the base model and freeze them so they will not be updated during the first training process"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"for layer in baseModel.layers:\n",
"\tlayer.trainable = False"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"#Compile the neural network Module"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"opt = Adam(lr=initLayer, decay=initLayer / epochs)\n",
"model.compile(loss=\"binary_crossentropy\", optimizer=opt,\n",
"\tmetrics=[\"accuracy\"])"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"#Train the head of the module"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"tags": []
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "Epoch 1/5\n95/95 [==============================] - 98s 1s/step - loss: 0.2674 - accuracy: 0.8813 - val_loss: 0.0824 - val_accuracy: 0.9752\nEpoch 2/5\n95/95 [==============================] - 98s 1s/step - loss: 0.1011 - accuracy: 0.9667 - val_loss: 0.0577 - val_accuracy: 0.9831\nEpoch 3/5\n95/95 [==============================] - 96s 1s/step - loss: 0.0831 - accuracy: 0.9726 - val_loss: 0.0477 - val_accuracy: 0.9844\nEpoch 4/5\n95/95 [==============================] - 99s 1s/step - loss: 0.0648 - accuracy: 0.9763 - val_loss: 0.0381 - val_accuracy: 0.9844\nEpoch 5/5\n95/95 [==============================] - 97s 1s/step - loss: 0.0554 - accuracy: 0.9806 - val_loss: 0.0310 - val_accuracy: 0.9870\n"
}
],
"source": [
"H = model.fit(aug.flow(trainX, trainY, batch_size=batch),\n",
"\tsteps_per_epoch=len(trainX) // batch,\n",
"\tvalidation_data=(testX, testY),\n",
"\tvalidation_steps=len(testX) // batch,\n",
"\tepochs=epochs)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"#Serialize the model to disk"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"model.save(\"mask_detector.model\", save_format=\"h5\")"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"# plot the training loss and accuracy\n"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": "<Figure size 432x288 with 1 Axes>",
"image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<!-- Created with matplotlib (https://matplotlib.org/) -->\n<svg height=\"281.073625pt\" version=\"1.1\" viewBox=\"0 0 387.716875 281.073625\" width=\"387.716875pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n <metadata>\n <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n <cc:Work>\n <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"></dc:type>\n <dc:date>2020-09-20T14:42:17.442271</dc:date>\n <dc:format>image/svg+xml</dc:format>\n <dc:creator>\n <cc:Agent>\n <dc:title>Matplotlib v3.3.2, https://matplotlib.org/</dc:title>\n </cc:Agent>\n </dc:creator>\n </cc:Work>\n </rdf:RDF>\n </metadata>\n <defs>\n <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\n </defs>\n <g id=\"figure_1\">\n <g id=\"patch_1\">\n <path d=\"M 0 281.073625 \nL 387.716875 281.073625 \nL 387.716875 0 \nL 0 0 \nz\n\" style=\"fill:#ffffff;\"></path>\n </g>\n <g id=\"axes_1\">\n <g id=\"patch_2\">\n <path d=\"M 45.716875 241.58175 \nL 380.516875 241.58175 \nL 380.516875 24.14175 \nL 45.716875 24.14175 \nz\n\" style=\"fill:#e5e5e5;\"></path>\n </g>\n <g id=\"matplotlib.axis_1\">\n <g id=\"xtick_1\">\n <g id=\"line2d_1\">\n <path clip-path=\"url(#p5110a85808)\" d=\"M 60.935057 241.58175 \nL 60.935057 24.14175 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:square;stroke-width:0.8;\"></path>\n </g>\n <g id=\"line2d_2\">\n <defs>\n <path d=\"M 0 0 \nL 0 3.5 \n\" id=\"mdb0c5f6fa3\" style=\"stroke:#555555;stroke-width:0.8;\"></path>\n </defs>\n <g>\n <use style=\"fill:#555555;stroke:#555555;stroke-width:0.8;\" x=\"60.935057\" xlink:href=\"#mdb0c5f6fa3\" y=\"241.58175\"></use>\n </g>\n </g>\n <g id=\"text_1\">\n <!-- 0.0 -->\n <g style=\"fill:#555555;\" transform=\"translate(52.983494 256.180187)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 31.78125 66.40625 \nQ 24.171875 66.40625 20.328125 58.90625 \nQ 16.5 51.421875 16.5 36.375 \nQ 16.5 21.390625 20.328125 13.890625 \nQ 24.171875 6.390625 31.78125 6.390625 \nQ 39.453125 6.390625 43.28125 13.890625 \nQ 47.125 21.390625 47.125 36.375 \nQ 47.125 51.421875 43.28125 58.90625 \nQ 39.453125 66.40625 31.78125 66.40625 \nz\nM 31.78125 74.21875 \nQ 44.046875 74.21875 50.515625 64.515625 \nQ 56.984375 54.828125 56.984375 36.375 \nQ 56.984375 17.96875 50.515625 8.265625 \nQ 44.046875 -1.421875 31.78125 -1.421875 \nQ 19.53125 -1.421875 13.0625 8.265625 \nQ 6.59375 17.96875 6.59375 36.375 \nQ 6.59375 54.828125 13.0625 64.515625 \nQ 19.53125 74.21875 31.78125 74.21875 \nz\n\" id=\"DejaVuSans-48\"></path>\n <path d=\"M 10.6875 12.40625 \nL 21 12.40625 \nL 21 0 \nL 10.6875 0 \nz\n\" id=\"DejaVuSans-46\"></path>\n </defs>\n <use xlink:href=\"#DejaVuSans-48\"></use>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"></use>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"></use>\n </g>\n </g>\n </g>\n <g id=\"xtick_2\">\n <g id=\"line2d_3\">\n <path clip-path=\"url(#p5110a85808)\" d=\"M 98.980511 241.58175 \nL 98.980511 24.14175 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:square;stroke-width:0.8;\"></path>\n </g>\n <g id=\"line2d_4\">\n <g>\n <use style=\"fill:#555555;stroke:#555555;stroke-width:0.8;\" x=\"98.980511\" xlink:href=\"#mdb0c5f6fa3\" y=\"241.58175\"></use>\n </g>\n </g>\n <g id=\"text_2\">\n <!-- 0.5 -->\n <g style=\"fill:#555555;\" transform=\"translate(91.028949 256.180187)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 10.796875 72.90625 \nL 49.515625 72.90625 \nL 49.515625 64.59375 \nL 19.828125 64.59375 \nL 19.828125 46.734375 \nQ 21.96875 47.46875 24.109375 47.828125 \nQ 26.265625 48.1875 28.421875 48.1875 \nQ 40.625 48.1875 47.75 41.5 \nQ 54.890625 34.8125 54.890625 23.390625 \nQ 54.890625 11.625 47.5625 5.09375 \nQ 40.234375 -1.421875 26.90625 -1.421875 \nQ 22.3125 -1.421875 17.546875 -0.640625 \nQ 12.796875 0.140625 7.71875 1.703125 \nL 7.71875 11.625 \nQ 12.109375 9.234375 16.796875 8.0625 \nQ 21.484375 6.890625 26.703125 6.890625 \nQ 35.15625 6.890625 40.078125 11.328125 \nQ 45.015625 15.765625 45.015625 23.390625 \nQ 45.015625 31 40.078125 35.4375 \nQ 35.15625 39.890625 26.703125 39.890625 \nQ 22.75 39.890625 18.8125 39.015625 \nQ 14.890625 38.140625 10.796875 36.28125 \nz\n\" id=\"DejaVuSans-53\"></path>\n </defs>\n <use xlink:href=\"#DejaVuSans-48\"></use>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"></use>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-53\"></use>\n </g>\n </g>\n </g>\n <g id=\"xtick_3\">\n <g id=\"line2d_5\">\n <path clip-path=\"url(#p5110a85808)\" d=\"M 137.025966 241.58175 \nL 137.025966 24.14175 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:square;stroke-width:0.8;\"></path>\n </g>\n <g id=\"line2d_6\">\n <g>\n <use style=\"fill:#555555;stroke:#555555;stroke-width:0.8;\" x=\"137.025966\" xlink:href=\"#mdb0c5f6fa3\" y=\"241.58175\"></use>\n </g>\n </g>\n <g id=\"text_3\">\n <!-- 1.0 -->\n <g style=\"fill:#555555;\" transform=\"translate(129.074403 256.180187)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 12.40625 8.296875 \nL 28.515625 8.296875 \nL 28.515625 63.921875 \nL 10.984375 60.40625 \nL 10.984375 69.390625 \nL 28.421875 72.90625 \nL 38.28125 72.90625 \nL 38.28125 8.296875 \nL 54.390625 8.296875 \nL 54.390625 0 \nL 12.40625 0 \nz\n\" id=\"DejaVuSans-49\"></path>\n </defs>\n <use xlink:href=\"#DejaVuSans-49\"></use>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"></use>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"></use>\n </g>\n </g>\n </g>\n <g id=\"xtick_4\">\n <g id=\"line2d_7\">\n <path clip-path=\"url(#p5110a85808)\" d=\"M 175.07142 241.58175 \nL 175.07142 24.14175 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:square;stroke-width:0.8;\"></path>\n </g>\n <g id=\"line2d_8\">\n <g>\n <use style=\"fill:#555555;stroke:#555555;stroke-width:0.8;\" x=\"175.07142\" xlink:href=\"#mdb0c5f6fa3\" y=\"241.58175\"></use>\n </g>\n </g>\n <g id=\"text_4\">\n <!-- 1.5 -->\n <g style=\"fill:#555555;\" transform=\"translate(167.119858 256.180187)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-49\"></use>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"></use>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-53\"></use>\n </g>\n </g>\n </g>\n <g id=\"xtick_5\">\n <g id=\"line2d_9\">\n <path clip-path=\"url(#p5110a85808)\" d=\"M 213.116875 241.58175 \nL 213.116875 24.14175 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:square;stroke-width:0.8;\"></path>\n </g>\n <g id=\"line2d_10\">\n <g>\n <use style=\"fill:#555555;stroke:#555555;stroke-width:0.8;\" x=\"213.116875\" xlink:href=\"#mdb0c5f6fa3\" y=\"241.58175\"></use>\n </g>\n </g>\n <g id=\"text_5\">\n <!-- 2.0 -->\n <g style=\"fill:#555555;\" transform=\"translate(205.165312 256.180187)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 19.1875 8.296875 \nL 53.609375 8.296875 \nL 53.609375 0 \nL 7.328125 0 \nL 7.328125 8.296875 \nQ 12.9375 14.109375 22.625 23.890625 \nQ 32.328125 33.6875 34.8125 36.53125 \nQ 39.546875 41.84375 41.421875 45.53125 \nQ 43.3125 49.21875 43.3125 52.78125 \nQ 43.3125 58.59375 39.234375 62.25 \nQ 35.15625 65.921875 28.609375 65.921875 \nQ 23.96875 65.921875 18.8125 64.3125 \nQ 13.671875 62.703125 7.8125 59.421875 \nL 7.8125 69.390625 \nQ 13.765625 71.78125 18.9375 73 \nQ 24.125 74.21875 28.421875 74.21875 \nQ 39.75 74.21875 46.484375 68.546875 \nQ 53.21875 62.890625 53.21875 53.421875 \nQ 53.21875 48.921875 51.53125 44.890625 \nQ 49.859375 40.875 45.40625 35.40625 \nQ 44.1875 33.984375 37.640625 27.21875 \nQ 31.109375 20.453125 19.1875 8.296875 \nz\n\" id=\"DejaVuSans-50\"></path>\n </defs>\n <use xlink:href=\"#DejaVuSans-50\"></use>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"></use>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"></use>\n </g>\n </g>\n </g>\n <g id=\"xtick_6\">\n <g id=\"line2d_11\">\n <path clip-path=\"url(#p5110a85808)\" d=\"M 251.16233 241.58175 \nL 251.16233 24.14175 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:square;stroke-width:0.8;\"></path>\n </g>\n <g id=\"line2d_12\">\n <g>\n <use style=\"fill:#555555;stroke:#555555;stroke-width:0.8;\" x=\"251.16233\" xlink:href=\"#mdb0c5f6fa3\" y=\"241.58175\"></use>\n </g>\n </g>\n <g id=\"text_6\">\n <!-- 2.5 -->\n <g style=\"fill:#555555;\" transform=\"translate(243.210767 256.180187)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-50\"></use>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"></use>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-53\"></use>\n </g>\n </g>\n </g>\n <g id=\"xtick_7\">\n <g id=\"line2d_13\">\n <path clip-path=\"url(#p5110a85808)\" d=\"M 289.207784 241.58175 \nL 289.207784 24.14175 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:square;stroke-width:0.8;\"></path>\n </g>\n <g id=\"line2d_14\">\n <g>\n <use style=\"fill:#555555;stroke:#555555;stroke-width:0.8;\" x=\"289.207784\" xlink:href=\"#mdb0c5f6fa3\" y=\"241.58175\"></use>\n </g>\n </g>\n <g id=\"text_7\">\n <!-- 3.0 -->\n <g style=\"fill:#555555;\" transform=\"translate(281.256222 256.180187)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 40.578125 39.3125 \nQ 47.65625 37.796875 51.625 33 \nQ 55.609375 28.21875 55.609375 21.1875 \nQ 55.609375 10.40625 48.1875 4.484375 \nQ 40.765625 -1.421875 27.09375 -1.421875 \nQ 22.515625 -1.421875 17.65625 -0.515625 \nQ 12.796875 0.390625 7.625 2.203125 \nL 7.625 11.71875 \nQ 11.71875 9.328125 16.59375 8.109375 \nQ 21.484375 6.890625 26.8125 6.890625 \nQ 36.078125 6.890625 40.9375 10.546875 \nQ 45.796875 14.203125 45.796875 21.1875 \nQ 45.796875 27.640625 41.28125 31.265625 \nQ 36.765625 34.90625 28.71875 34.90625 \nL 20.21875 34.90625 \nL 20.21875 43.015625 \nL 29.109375 43.015625 \nQ 36.375 43.015625 40.234375 45.921875 \nQ 44.09375 48.828125 44.09375 54.296875 \nQ 44.09375 59.90625 40.109375 62.90625 \nQ 36.140625 65.921875 28.71875 65.921875 \nQ 24.65625 65.921875 20.015625 65.03125 \nQ 15.375 64.15625 9.8125 62.3125 \nL 9.8125 71.09375 \nQ 15.4375 72.65625 20.34375 73.4375 \nQ 25.25 74.21875 29.59375 74.21875 \nQ 40.828125 74.21875 47.359375 69.109375 \nQ 53.90625 64.015625 53.90625 55.328125 \nQ 53.90625 49.265625 50.4375 45.09375 \nQ 46.96875 40.921875 40.578125 39.3125 \nz\n\" id=\"DejaVuSans-51\"></path>\n </defs>\n <use xlink:href=\"#DejaVuSans-51\"></use>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"></use>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"></use>\n </g>\n </g>\n </g>\n <g id=\"xtick_8\">\n <g id=\"line2d_15\">\n <path clip-path=\"url(#p5110a85808)\" d=\"M 327.253239 241.58175 \nL 327.253239 24.14175 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:square;stroke-width:0.8;\"></path>\n </g>\n <g id=\"line2d_16\">\n <g>\n <use style=\"fill:#555555;stroke:#555555;stroke-width:0.8;\" x=\"327.253239\" xlink:href=\"#mdb0c5f6fa3\" y=\"241.58175\"></use>\n </g>\n </g>\n <g id=\"text_8\">\n <!-- 3.5 -->\n <g style=\"fill:#555555;\" transform=\"translate(319.301676 256.180187)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-51\"></use>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"></use>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-53\"></use>\n </g>\n </g>\n </g>\n <g id=\"xtick_9\">\n <g id=\"line2d_17\">\n <path clip-path=\"url(#p5110a85808)\" d=\"M 365.298693 241.58175 \nL 365.298693 24.14175 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:square;stroke-width:0.8;\"></path>\n </g>\n <g id=\"line2d_18\">\n <g>\n <use style=\"fill:#555555;stroke:#555555;stroke-width:0.8;\" x=\"365.298693\" xlink:href=\"#mdb0c5f6fa3\" y=\"241.58175\"></use>\n </g>\n </g>\n <g id=\"text_9\">\n <!-- 4.0 -->\n <g style=\"fill:#555555;\" transform=\"translate(357.347131 256.180187)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 37.796875 64.3125 \nL 12.890625 25.390625 \nL 37.796875 25.390625 \nz\nM 35.203125 72.90625 \nL 47.609375 72.90625 \nL 47.609375 25.390625 \nL 58.015625 25.390625 \nL 58.015625 17.1875 \nL 47.609375 17.1875 \nL 47.609375 0 \nL 37.796875 0 \nL 37.796875 17.1875 \nL 4.890625 17.1875 \nL 4.890625 26.703125 \nz\n\" id=\"DejaVuSans-52\"></path>\n </defs>\n <use xlink:href=\"#DejaVuSans-52\"></use>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"></use>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"></use>\n </g>\n </g>\n </g>\n <g id=\"text_10\">\n <!-- Epoch # -->\n <g style=\"fill:#555555;\" transform=\"translate(187.809062 271.378)scale(0.12 -0.12)\">\n <defs>\n <path d=\"M 9.8125 72.90625 \nL 55.90625 72.90625 \nL 55.90625 64.59375 \nL 19.671875 64.59375 \nL 19.671875 43.015625 \nL 54.390625 43.015625 \nL 54.390625 34.71875 \nL 19.671875 34.71875 \nL 19.671875 8.296875 \nL 56.78125 8.296875 \nL 56.78125 0 \nL 9.8125 0 \nz\n\" id=\"DejaVuSans-69\"></path>\n <path d=\"M 18.109375 8.203125 \nL 18.109375 -20.796875 \nL 9.078125 -20.796875 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.390625 \nQ 20.953125 51.265625 25.265625 53.625 \nQ 29.59375 56 35.59375 56 \nQ 45.5625 56 51.78125 48.09375 \nQ 58.015625 40.1875 58.015625 27.296875 \nQ 58.015625 14.40625 51.78125 6.484375 \nQ 45.5625 -1.421875 35.59375 -1.421875 \nQ 29.59375 -1.421875 25.265625 0.953125 \nQ 20.953125 3.328125 18.109375 8.203125 \nz\nM 48.6875 27.296875 \nQ 48.6875 37.203125 44.609375 42.84375 \nQ 40.53125 48.484375 33.40625 48.484375 \nQ 26.265625 48.484375 22.1875 42.84375 \nQ 18.109375 37.203125 18.109375 27.296875 \nQ 18.109375 17.390625 22.1875 11.75 \nQ 26.265625 6.109375 33.40625 6.109375 \nQ 40.53125 6.109375 44.609375 11.75 \nQ 48.6875 17.390625 48.6875 27.296875 \nz\n\" id=\"DejaVuSans-112\"></path>\n <path d=\"M 30.609375 48.390625 \nQ 23.390625 48.390625 19.1875 42.75 \nQ 14.984375 37.109375 14.984375 27.296875 \nQ 14.984375 17.484375 19.15625 11.84375 \nQ 23.34375 6.203125 30.609375 6.203125 \nQ 37.796875 6.203125 41.984375 11.859375 \nQ 46.1875 17.53125 46.1875 27.296875 \nQ 46.1875 37.015625 41.984375 42.703125 \nQ 37.796875 48.390625 30.609375 48.390625 \nz\nM 30.609375 56 \nQ 42.328125 56 49.015625 48.375 \nQ 55.71875 40.765625 55.71875 27.296875 \nQ 55.71875 13.875 49.015625 6.21875 \nQ 42.328125 -1.421875 30.609375 -1.421875 \nQ 18.84375 -1.421875 12.171875 6.21875 \nQ 5.515625 13.875 5.515625 27.296875 \nQ 5.515625 40.765625 12.171875 48.375 \nQ 18.84375 56 30.609375 56 \nz\n\" id=\"DejaVuSans-111\"></path>\n <path d=\"M 48.78125 52.59375 \nL 48.78125 44.1875 \nQ 44.96875 46.296875 41.140625 47.34375 \nQ 37.3125 48.390625 33.40625 48.390625 \nQ 24.65625 48.390625 19.8125 42.84375 \nQ 14.984375 37.3125 14.984375 27.296875 \nQ 14.984375 17.28125 19.8125 11.734375 \nQ 24.65625 6.203125 33.40625 6.203125 \nQ 37.3125 6.203125 41.140625 7.25 \nQ 44.96875 8.296875 48.78125 10.40625 \nL 48.78125 2.09375 \nQ 45.015625 0.34375 40.984375 -0.53125 \nQ 36.96875 -1.421875 32.421875 -1.421875 \nQ 20.0625 -1.421875 12.78125 6.34375 \nQ 5.515625 14.109375 5.515625 27.296875 \nQ 5.515625 40.671875 12.859375 48.328125 \nQ 20.21875 56 33.015625 56 \nQ 37.15625 56 41.109375 55.140625 \nQ 45.0625 54.296875 48.78125 52.59375 \nz\n\" id=\"DejaVuSans-99\"></path>\n <path d=\"M 54.890625 33.015625 \nL 54.890625 0 \nL 45.90625 0 \nL 45.90625 32.71875 \nQ 45.90625 40.484375 42.875 44.328125 \nQ 39.84375 48.1875 33.796875 48.1875 \nQ 26.515625 48.1875 22.3125 43.546875 \nQ 18.109375 38.921875 18.109375 30.90625 \nL 18.109375 0 \nL 9.078125 0 \nL 9.078125 75.984375 \nL 18.109375 75.984375 \nL 18.109375 46.1875 \nQ 21.34375 51.125 25.703125 53.5625 \nQ 30.078125 56 35.796875 56 \nQ 45.21875 56 50.046875 50.171875 \nQ 54.890625 44.34375 54.890625 33.015625 \nz\n\" id=\"DejaVuSans-104\"></path>\n <path id=\"DejaVuSans-32\"></path>\n <path d=\"M 51.125 44 \nL 36.921875 44 \nL 32.8125 27.6875 \nL 47.125 27.6875 \nz\nM 43.796875 71.78125 \nL 38.71875 51.515625 \nL 52.984375 51.515625 \nL 58.109375 71.78125 \nL 65.921875 71.78125 \nL 60.890625 51.515625 \nL 76.125 51.515625 \nL 76.125 44 \nL 58.984375 44 \nL 54.984375 27.6875 \nL 70.515625 27.6875 \nL 70.515625 20.21875 \nL 53.078125 20.21875 \nL 48 0 \nL 40.1875 0 \nL 45.21875 20.21875 \nL 30.90625 20.21875 \nL 25.875 0 \nL 18.015625 0 \nL 23.09375 20.21875 \nL 7.71875 20.21875 \nL 7.71875 27.6875 \nL 24.90625 27.6875 \nL 29 44 \nL 13.28125 44 \nL 13.28125 51.515625 \nL 30.90625 51.515625 \nL 35.890625 71.78125 \nz\n\" id=\"DejaVuSans-35\"></path>\n </defs>\n <use xlink:href=\"#DejaVuSans-69\"></use>\n <use x=\"63.183594\" xlink:href=\"#DejaVuSans-112\"></use>\n <use x=\"126.660156\" xlink:href=\"#DejaVuSans-111\"></use>\n <use x=\"187.841797\" xlink:href=\"#DejaVuSans-99\"></use>\n <use x=\"242.822266\" xlink:href=\"#DejaVuSans-104\"></use>\n <use x=\"306.201172\" xlink:href=\"#DejaVuSans-32\"></use>\n <use x=\"337.988281\" xlink:href=\"#DejaVuSans-35\"></use>\n </g>\n </g>\n </g>\n <g id=\"matplotlib.axis_2\">\n <g id=\"ytick_1\">\n <g id=\"line2d_19\">\n <path clip-path=\"url(#p5110a85808)\" d=\"M 45.716875 238.100964 \nL 380.516875 238.100964 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:square;stroke-width:0.8;\"></path>\n </g>\n <g id=\"line2d_20\">\n <defs>\n <path d=\"M 0 0 \nL -3.5 0 \n\" id=\"mdbd7a40c0d\" style=\"stroke:#555555;stroke-width:0.8;\"></path>\n </defs>\n <g>\n <use style=\"fill:#555555;stroke:#555555;stroke-width:0.8;\" x=\"45.716875\" xlink:href=\"#mdbd7a40c0d\" y=\"238.100964\"></use>\n </g>\n </g>\n <g id=\"text_11\">\n <!-- 0.0 -->\n <g style=\"fill:#555555;\" transform=\"translate(22.81375 241.900182)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"></use>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"></use>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"></use>\n </g>\n </g>\n </g>\n <g id=\"ytick_2\">\n <g id=\"line2d_21\">\n <path clip-path=\"url(#p5110a85808)\" d=\"M 45.716875 196.746679 \nL 380.516875 196.746679 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:square;stroke-width:0.8;\"></path>\n </g>\n <g id=\"line2d_22\">\n <g>\n <use style=\"fill:#555555;stroke:#555555;stroke-width:0.8;\" x=\"45.716875\" xlink:href=\"#mdbd7a40c0d\" y=\"196.746679\"></use>\n </g>\n </g>\n <g id=\"text_12\">\n <!-- 0.2 -->\n <g style=\"fill:#555555;\" transform=\"translate(22.81375 200.545898)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"></use>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"></use>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-50\"></use>\n </g>\n </g>\n </g>\n <g id=\"ytick_3\">\n <g id=\"line2d_23\">\n <path clip-path=\"url(#p5110a85808)\" d=\"M 45.716875 155.392395 \nL 380.516875 155.392395 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:square;stroke-width:0.8;\"></path>\n </g>\n <g id=\"line2d_24\">\n <g>\n <use style=\"fill:#555555;stroke:#555555;stroke-width:0.8;\" x=\"45.716875\" xlink:href=\"#mdbd7a40c0d\" y=\"155.392395\"></use>\n </g>\n </g>\n <g id=\"text_13\">\n <!-- 0.4 -->\n <g style=\"fill:#555555;\" transform=\"translate(22.81375 159.191614)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"></use>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"></use>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-52\"></use>\n </g>\n </g>\n </g>\n <g id=\"ytick_4\">\n <g id=\"line2d_25\">\n <path clip-path=\"url(#p5110a85808)\" d=\"M 45.716875 114.038111 \nL 380.516875 114.038111 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:square;stroke-width:0.8;\"></path>\n </g>\n <g id=\"line2d_26\">\n <g>\n <use style=\"fill:#555555;stroke:#555555;stroke-width:0.8;\" x=\"45.716875\" xlink:href=\"#mdbd7a40c0d\" y=\"114.038111\"></use>\n </g>\n </g>\n <g id=\"text_14\">\n <!-- 0.6 -->\n <g style=\"fill:#555555;\" transform=\"translate(22.81375 117.837329)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 33.015625 40.375 \nQ 26.375 40.375 22.484375 35.828125 \nQ 18.609375 31.296875 18.609375 23.390625 \nQ 18.609375 15.53125 22.484375 10.953125 \nQ 26.375 6.390625 33.015625 6.390625 \nQ 39.65625 6.390625 43.53125 10.953125 \nQ 47.40625 15.53125 47.40625 23.390625 \nQ 47.40625 31.296875 43.53125 35.828125 \nQ 39.65625 40.375 33.015625 40.375 \nz\nM 52.59375 71.296875 \nL 52.59375 62.3125 \nQ 48.875 64.0625 45.09375 64.984375 \nQ 41.3125 65.921875 37.59375 65.921875 \nQ 27.828125 65.921875 22.671875 59.328125 \nQ 17.53125 52.734375 16.796875 39.40625 \nQ 19.671875 43.65625 24.015625 45.921875 \nQ 28.375 48.1875 33.59375 48.1875 \nQ 44.578125 48.1875 50.953125 41.515625 \nQ 57.328125 34.859375 57.328125 23.390625 \nQ 57.328125 12.15625 50.6875 5.359375 \nQ 44.046875 -1.421875 33.015625 -1.421875 \nQ 20.359375 -1.421875 13.671875 8.265625 \nQ 6.984375 17.96875 6.984375 36.375 \nQ 6.984375 53.65625 15.1875 63.9375 \nQ 23.390625 74.21875 37.203125 74.21875 \nQ 40.921875 74.21875 44.703125 73.484375 \nQ 48.484375 72.75 52.59375 71.296875 \nz\n\" id=\"DejaVuSans-54\"></path>\n </defs>\n <use xlink:href=\"#DejaVuSans-48\"></use>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"></use>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-54\"></use>\n </g>\n </g>\n </g>\n <g id=\"ytick_5\">\n <g id=\"line2d_27\">\n <path clip-path=\"url(#p5110a85808)\" d=\"M 45.716875 72.683826 \nL 380.516875 72.683826 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:square;stroke-width:0.8;\"></path>\n </g>\n <g id=\"line2d_28\">\n <g>\n <use style=\"fill:#555555;stroke:#555555;stroke-width:0.8;\" x=\"45.716875\" xlink:href=\"#mdbd7a40c0d\" y=\"72.683826\"></use>\n </g>\n </g>\n <g id=\"text_15\">\n <!-- 0.8 -->\n <g style=\"fill:#555555;\" transform=\"translate(22.81375 76.483045)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 31.78125 34.625 \nQ 24.75 34.625 20.71875 30.859375 \nQ 16.703125 27.09375 16.703125 20.515625 \nQ 16.703125 13.921875 20.71875 10.15625 \nQ 24.75 6.390625 31.78125 6.390625 \nQ 38.8125 6.390625 42.859375 10.171875 \nQ 46.921875 13.96875 46.921875 20.515625 \nQ 46.921875 27.09375 42.890625 30.859375 \nQ 38.875 34.625 31.78125 34.625 \nz\nM 21.921875 38.8125 \nQ 15.578125 40.375 12.03125 44.71875 \nQ 8.5 49.078125 8.5 55.328125 \nQ 8.5 64.0625 14.71875 69.140625 \nQ 20.953125 74.21875 31.78125 74.21875 \nQ 42.671875 74.21875 48.875 69.140625 \nQ 55.078125 64.0625 55.078125 55.328125 \nQ 55.078125 49.078125 51.53125 44.71875 \nQ 48 40.375 41.703125 38.8125 \nQ 48.828125 37.15625 52.796875 32.3125 \nQ 56.78125 27.484375 56.78125 20.515625 \nQ 56.78125 9.90625 50.3125 4.234375 \nQ 43.84375 -1.421875 31.78125 -1.421875 \nQ 19.734375 -1.421875 13.25 4.234375 \nQ 6.78125 9.90625 6.78125 20.515625 \nQ 6.78125 27.484375 10.78125 32.3125 \nQ 14.796875 37.15625 21.921875 38.8125 \nz\nM 18.3125 54.390625 \nQ 18.3125 48.734375 21.84375 45.5625 \nQ 25.390625 42.390625 31.78125 42.390625 \nQ 38.140625 42.390625 41.71875 45.5625 \nQ 45.3125 48.734375 45.3125 54.390625 \nQ 45.3125 60.0625 41.71875 63.234375 \nQ 38.140625 66.40625 31.78125 66.40625 \nQ 25.390625 66.40625 21.84375 63.234375 \nQ 18.3125 60.0625 18.3125 54.390625 \nz\n\" id=\"DejaVuSans-56\"></path>\n </defs>\n <use xlink:href=\"#DejaVuSans-48\"></use>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"></use>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-56\"></use>\n </g>\n </g>\n </g>\n <g id=\"ytick_6\">\n <g id=\"line2d_29\">\n <path clip-path=\"url(#p5110a85808)\" d=\"M 45.716875 31.329542 \nL 380.516875 31.329542 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:square;stroke-width:0.8;\"></path>\n </g>\n <g id=\"line2d_30\">\n <g>\n <use style=\"fill:#555555;stroke:#555555;stroke-width:0.8;\" x=\"45.716875\" xlink:href=\"#mdbd7a40c0d\" y=\"31.329542\"></use>\n </g>\n </g>\n <g id=\"text_16\">\n <!-- 1.0 -->\n <g style=\"fill:#555555;\" transform=\"translate(22.81375 35.128761)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-49\"></use>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"></use>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"></use>\n </g>\n </g>\n </g>\n <g id=\"text_17\">\n <!-- Loss/Accuracy -->\n <g style=\"fill:#555555;\" transform=\"translate(16.318125 175.437375)rotate(-90)scale(0.12 -0.12)\">\n <defs>\n <path d=\"M 9.8125 72.90625 \nL 19.671875 72.90625 \nL 19.671875 8.296875 \nL 55.171875 8.296875 \nL 55.171875 0 \nL 9.8125 0 \nz\n\" id=\"DejaVuSans-76\"></path>\n <path d=\"M 44.28125 53.078125 \nL 44.28125 44.578125 \nQ 40.484375 46.53125 36.375 47.5 \nQ 32.28125 48.484375 27.875 48.484375 \nQ 21.1875 48.484375 17.84375 46.4375 \nQ 14.5 44.390625 14.5 40.28125 \nQ 14.5 37.15625 16.890625 35.375 \nQ 19.28125 33.59375 26.515625 31.984375 \nL 29.59375 31.296875 \nQ 39.15625 29.25 43.1875 25.515625 \nQ 47.21875 21.78125 47.21875 15.09375 \nQ 47.21875 7.46875 41.1875 3.015625 \nQ 35.15625 -1.421875 24.609375 -1.421875 \nQ 20.21875 -1.421875 15.453125 -0.5625 \nQ 10.6875 0.296875 5.421875 2 \nL 5.421875 11.28125 \nQ 10.40625 8.6875 15.234375 7.390625 \nQ 20.0625 6.109375 24.8125 6.109375 \nQ 31.15625 6.109375 34.5625 8.28125 \nQ 37.984375 10.453125 37.984375 14.40625 \nQ 37.984375 18.0625 35.515625 20.015625 \nQ 33.0625 21.96875 24.703125 23.78125 \nL 21.578125 24.515625 \nQ 13.234375 26.265625 9.515625 29.90625 \nQ 5.8125 33.546875 5.8125 39.890625 \nQ 5.8125 47.609375 11.28125 51.796875 \nQ 16.75 56 26.8125 56 \nQ 31.78125 56 36.171875 55.265625 \nQ 40.578125 54.546875 44.28125 53.078125 \nz\n\" id=\"DejaVuSans-115\"></path>\n <path d=\"M 25.390625 72.90625 \nL 33.6875 72.90625 \nL 8.296875 -9.28125 \nL 0 -9.28125 \nz\n\" id=\"DejaVuSans-47\"></path>\n <path d=\"M 34.1875 63.1875 \nL 20.796875 26.90625 \nL 47.609375 26.90625 \nz\nM 28.609375 72.90625 \nL 39.796875 72.90625 \nL 67.578125 0 \nL 57.328125 0 \nL 50.6875 18.703125 \nL 17.828125 18.703125 \nL 11.1875 0 \nL 0.78125 0 \nz\n\" id=\"DejaVuSans-65\"></path>\n <path d=\"M 8.5 21.578125 \nL 8.5 54.6875 \nL 17.484375 54.6875 \nL 17.484375 21.921875 \nQ 17.484375 14.15625 20.5 10.265625 \nQ 23.53125 6.390625 29.59375 6.390625 \nQ 36.859375 6.390625 41.078125 11.03125 \nQ 45.3125 15.671875 45.3125 23.6875 \nL 45.3125 54.6875 \nL 54.296875 54.6875 \nL 54.296875 0 \nL 45.3125 0 \nL 45.3125 8.40625 \nQ 42.046875 3.421875 37.71875 1 \nQ 33.40625 -1.421875 27.6875 -1.421875 \nQ 18.265625 -1.421875 13.375 4.4375 \nQ 8.5 10.296875 8.5 21.578125 \nz\nM 31.109375 56 \nz\n\" id=\"DejaVuSans-117\"></path>\n <path d=\"M 41.109375 46.296875 \nQ 39.59375 47.171875 37.8125 47.578125 \nQ 36.03125 48 33.890625 48 \nQ 26.265625 48 22.1875 43.046875 \nQ 18.109375 38.09375 18.109375 28.8125 \nL 18.109375 0 \nL 9.078125 0 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.1875 \nQ 20.953125 51.171875 25.484375 53.578125 \nQ 30.03125 56 36.53125 56 \nQ 37.453125 56 38.578125 55.875 \nQ 39.703125 55.765625 41.0625 55.515625 \nz\n\" id=\"DejaVuSans-114\"></path>\n <path d=\"M 34.28125 27.484375 \nQ 23.390625 27.484375 19.1875 25 \nQ 14.984375 22.515625 14.984375 16.5 \nQ 14.984375 11.71875 18.140625 8.90625 \nQ 21.296875 6.109375 26.703125 6.109375 \nQ 34.1875 6.109375 38.703125 11.40625 \nQ 43.21875 16.703125 43.21875 25.484375 \nL 43.21875 27.484375 \nz\nM 52.203125 31.203125 \nL 52.203125 0 \nL 43.21875 0 \nL 43.21875 8.296875 \nQ 40.140625 3.328125 35.546875 0.953125 \nQ 30.953125 -1.421875 24.3125 -1.421875 \nQ 15.921875 -1.421875 10.953125 3.296875 \nQ 6 8.015625 6 15.921875 \nQ 6 25.140625 12.171875 29.828125 \nQ 18.359375 34.515625 30.609375 34.515625 \nL 43.21875 34.515625 \nL 43.21875 35.40625 \nQ 43.21875 41.609375 39.140625 45 \nQ 35.0625 48.390625 27.6875 48.390625 \nQ 23 48.390625 18.546875 47.265625 \nQ 14.109375 46.140625 10.015625 43.890625 \nL 10.015625 52.203125 \nQ 14.9375 54.109375 19.578125 55.046875 \nQ 24.21875 56 28.609375 56 \nQ 40.484375 56 46.34375 49.84375 \nQ 52.203125 43.703125 52.203125 31.203125 \nz\n\" id=\"DejaVuSans-97\"></path>\n <path d=\"M 32.171875 -5.078125 \nQ 28.375 -14.84375 24.75 -17.8125 \nQ 21.140625 -20.796875 15.09375 -20.796875 \nL 7.90625 -20.796875 \nL 7.90625 -13.28125 \nL 13.1875 -13.28125 \nQ 16.890625 -13.28125 18.9375 -11.515625 \nQ 21 -9.765625 23.484375 -3.21875 \nL 25.09375 0.875 \nL 2.984375 54.6875 \nL 12.5 54.6875 \nL 29.59375 11.921875 \nL 46.6875 54.6875 \nL 56.203125 54.6875 \nz\n\" id=\"DejaVuSans-121\"></path>\n </defs>\n <use xlink:href=\"#DejaVuSans-76\"></use>\n <use x=\"53.962891\" xlink:href=\"#DejaVuSans-111\"></use>\n <use x=\"115.144531\" xlink:href=\"#DejaVuSans-115\"></use>\n <use x=\"167.244141\" xlink:href=\"#DejaVuSans-115\"></use>\n <use x=\"219.34375\" xlink:href=\"#DejaVuSans-47\"></use>\n <use x=\"253.035156\" xlink:href=\"#DejaVuSans-65\"></use>\n <use x=\"319.693359\" xlink:href=\"#DejaVuSans-99\"></use>\n <use x=\"374.673828\" xlink:href=\"#DejaVuSans-99\"></use>\n <use x=\"429.654297\" xlink:href=\"#DejaVuSans-117\"></use>\n <use x=\"493.033203\" xlink:href=\"#DejaVuSans-114\"></use>\n <use x=\"534.146484\" xlink:href=\"#DejaVuSans-97\"></use>\n <use x=\"595.425781\" xlink:href=\"#DejaVuSans-99\"></use>\n <use x=\"650.40625\" xlink:href=\"#DejaVuSans-121\"></use>\n </g>\n </g>\n </g>\n <g id=\"line2d_31\">\n <path clip-path=\"url(#p5110a85808)\" d=\"M 60.935057 182.800008 \nL 137.025966 217.206463 \nL 213.116875 220.918655 \nL 289.207784 224.708716 \nL 365.298693 226.637537 \n\" style=\"fill:none;stroke:#e24a33;stroke-linecap:square;stroke-width:1.5;\"></path>\n </g>\n <g id=\"line2d_32\">\n <path clip-path=\"url(#p5110a85808)\" d=\"M 60.935057 221.060963 \nL 137.025966 226.170729 \nL 213.116875 228.233885 \nL 289.207784 230.227127 \nL 365.298693 231.698114 \n\" style=\"fill:none;stroke:#348abd;stroke-linecap:square;stroke-width:1.5;\"></path>\n </g>\n <g id=\"line2d_33\">\n <path clip-path=\"url(#p5110a85808)\" d=\"M 60.935057 55.864059 \nL 137.025966 38.212833 \nL 213.116875 36.98611 \nL 289.207784 36.236445 \nL 365.298693 35.350471 \n\" style=\"fill:none;stroke:#988ed5;stroke-linecap:square;stroke-width:1.5;\"></path>\n </g>\n <g id=\"line2d_34\">\n <path clip-path=\"url(#p5110a85808)\" d=\"M 60.935057 36.451644 \nL 137.025966 34.834147 \nL 213.116875 34.56456 \nL 289.207784 34.56456 \nL 365.298693 34.025386 \n\" style=\"fill:none;stroke:#777777;stroke-linecap:square;stroke-width:1.5;\"></path>\n </g>\n <g id=\"patch_3\">\n <path d=\"M 45.716875 241.58175 \nL 45.716875 24.14175 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:square;stroke-linejoin:miter;\"></path>\n </g>\n <g id=\"patch_4\">\n <path d=\"M 380.516875 241.58175 \nL 380.516875 24.14175 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:square;stroke-linejoin:miter;\"></path>\n </g>\n <g id=\"patch_5\">\n <path d=\"M 45.716875 241.58175 \nL 380.516875 241.58175 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:square;stroke-linejoin:miter;\"></path>\n </g>\n <g id=\"patch_6\">\n <path d=\"M 45.716875 24.14175 \nL 380.516875 24.14175 \n\" style=\"fill:none;stroke:#ffffff;stroke-linecap:square;stroke-linejoin:miter;\"></path>\n </g>\n <g id=\"text_18\">\n <!-- Training Loss and Accuracy -->\n <g transform=\"translate(115.635625 18.14175)scale(0.144 -0.144)\">\n <defs>\n <path d=\"M -0.296875 72.90625 \nL 61.375 72.90625 \nL 61.375 64.59375 \nL 35.5 64.59375 \nL 35.5 0 \nL 25.59375 0 \nL 25.59375 64.59375 \nL -0.296875 64.59375 \nz\n\" id=\"DejaVuSans-84\"></path>\n <path d=\"M 9.421875 54.6875 \nL 18.40625 54.6875 \nL 18.40625 0 \nL 9.421875 0 \nz\nM 9.421875 75.984375 \nL 18.40625 75.984375 \nL 18.40625 64.59375 \nL 9.421875 64.59375 \nz\n\" id=\"DejaVuSans-105\"></path>\n <path d=\"M 54.890625 33.015625 \nL 54.890625 0 \nL 45.90625 0 \nL 45.90625 32.71875 \nQ 45.90625 40.484375 42.875 44.328125 \nQ 39.84375 48.1875 33.796875 48.1875 \nQ 26.515625 48.1875 22.3125 43.546875 \nQ 18.109375 38.921875 18.109375 30.90625 \nL 18.109375 0 \nL 9.078125 0 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.1875 \nQ 21.34375 51.125 25.703125 53.5625 \nQ 30.078125 56 35.796875 56 \nQ 45.21875 56 50.046875 50.171875 \nQ 54.890625 44.34375 54.890625 33.015625 \nz\n\" id=\"DejaVuSans-110\"></path>\n <path d=\"M 45.40625 27.984375 \nQ 45.40625 37.75 41.375 43.109375 \nQ 37.359375 48.484375 30.078125 48.484375 \nQ 22.859375 48.484375 18.828125 43.109375 \nQ 14.796875 37.75 14.796875 27.984375 \nQ 14.796875 18.265625 18.828125 12.890625 \nQ 22.859375 7.515625 30.078125 7.515625 \nQ 37.359375 7.515625 41.375 12.890625 \nQ 45.40625 18.265625 45.40625 27.984375 \nz\nM 54.390625 6.78125 \nQ 54.390625 -7.171875 48.1875 -13.984375 \nQ 42 -20.796875 29.203125 -20.796875 \nQ 24.46875 -20.796875 20.265625 -20.09375 \nQ 16.0625 -19.390625 12.109375 -17.921875 \nL 12.109375 -9.1875 \nQ 16.0625 -11.328125 19.921875 -12.34375 \nQ 23.78125 -13.375 27.78125 -13.375 \nQ 36.625 -13.375 41.015625 -8.765625 \nQ 45.40625 -4.15625 45.40625 5.171875 \nL 45.40625 9.625 \nQ 42.625 4.78125 38.28125 2.390625 \nQ 33.9375 0 27.875 0 \nQ 17.828125 0 11.671875 7.65625 \nQ 5.515625 15.328125 5.515625 27.984375 \nQ 5.515625 40.671875 11.671875 48.328125 \nQ 17.828125 56 27.875 56 \nQ 33.9375 56 38.28125 53.609375 \nQ 42.625 51.21875 45.40625 46.390625 \nL 45.40625 54.6875 \nL 54.390625 54.6875 \nz\n\" id=\"DejaVuSans-103\"></path>\n <path d=\"M 45.40625 46.390625 \nL 45.40625 75.984375 \nL 54.390625 75.984375 \nL 54.390625 0 \nL 45.40625 0 \nL 45.40625 8.203125 \nQ 42.578125 3.328125 38.25 0.953125 \nQ 33.9375 -1.421875 27.875 -1.421875 \nQ 17.96875 -1.421875 11.734375 6.484375 \nQ 5.515625 14.40625 5.515625 27.296875 \nQ 5.515625 40.1875 11.734375 48.09375 \nQ 17.96875 56 27.875 56 \nQ 33.9375 56 38.25 53.625 \nQ 42.578125 51.265625 45.40625 46.390625 \nz\nM 14.796875 27.296875 \nQ 14.796875 17.390625 18.875 11.75 \nQ 22.953125 6.109375 30.078125 6.109375 \nQ 37.203125 6.109375 41.296875 11.75 \nQ 45.40625 17.390625 45.40625 27.296875 \nQ 45.40625 37.203125 41.296875 42.84375 \nQ 37.203125 48.484375 30.078125 48.484375 \nQ 22.953125 48.484375 18.875 42.84375 \nQ 14.796875 37.203125 14.796875 27.296875 \nz\n\" id=\"DejaVuSans-100\"></path>\n </defs>\n <use xlink:href=\"#DejaVuSans-84\"></use>\n <use x=\"46.333984\" xlink:href=\"#DejaVuSans-114\"></use>\n <use x=\"87.447266\" xlink:href=\"#DejaVuSans-97\"></use>\n <use x=\"148.726562\" xlink:href=\"#DejaVuSans-105\"></use>\n <use x=\"176.509766\" xlink:href=\"#DejaVuSans-110\"></use>\n <use x=\"239.888672\" xlink:href=\"#DejaVuSans-105\"></use>\n <use x=\"267.671875\" xlink:href=\"#DejaVuSans-110\"></use>\n <use x=\"331.050781\" xlink:href=\"#DejaVuSans-103\"></use>\n <use x=\"394.527344\" xlink:href=\"#DejaVuSans-32\"></use>\n <use x=\"426.314453\" xlink:href=\"#DejaVuSans-76\"></use>\n <use x=\"480.277344\" xlink:href=\"#DejaVuSans-111\"></use>\n <use x=\"541.458984\" xlink:href=\"#DejaVuSans-115\"></use>\n <use x=\"593.558594\" xlink:href=\"#DejaVuSans-115\"></use>\n <use x=\"645.658203\" xlink:href=\"#DejaVuSans-32\"></use>\n <use x=\"677.445312\" xlink:href=\"#DejaVuSans-97\"></use>\n <use x=\"738.724609\" xlink:href=\"#DejaVuSans-110\"></use>\n <use x=\"802.103516\" xlink:href=\"#DejaVuSans-100\"></use>\n <use x=\"865.580078\" xlink:href=\"#DejaVuSans-32\"></use>\n <use x=\"897.367188\" xlink:href=\"#DejaVuSans-65\"></use>\n <use x=\"964.025391\" xlink:href=\"#DejaVuSans-99\"></use>\n <use x=\"1019.005859\" xlink:href=\"#DejaVuSans-99\"></use>\n <use x=\"1073.986328\" xlink:href=\"#DejaVuSans-117\"></use>\n <use x=\"1137.365234\" xlink:href=\"#DejaVuSans-114\"></use>\n <use x=\"1178.478516\" xlink:href=\"#DejaVuSans-97\"></use>\n <use x=\"1239.757812\" xlink:href=\"#DejaVuSans-99\"></use>\n <use x=\"1294.738281\" xlink:href=\"#DejaVuSans-121\"></use>\n </g>\n </g>\n <g id=\"legend_1\">\n <g id=\"patch_7\">\n <path d=\"M 52.716875 236.58175 \nL 132.3075 236.58175 \nQ 134.3075 236.58175 134.3075 234.58175 \nL 134.3075 175.75675 \nQ 134.3075 173.75675 132.3075 173.75675 \nL 52.716875 173.75675 \nQ 50.716875 173.75675 50.716875 175.75675 \nL 50.716875 234.58175 \nQ 50.716875 236.58175 52.716875 236.58175 \nz\n\" style=\"fill:#e5e5e5;opacity:0.8;stroke:#cccccc;stroke-linejoin:miter;stroke-width:0.5;\"></path>\n </g>\n <g id=\"line2d_35\">\n <path d=\"M 54.716875 181.855187 \nL 74.716875 181.855187 \n\" style=\"fill:none;stroke:#e24a33;stroke-linecap:square;stroke-width:1.5;\"></path>\n </g>\n <g id=\"line2d_36\"></g>\n <g id=\"text_19\">\n <!-- train_loss -->\n <g transform=\"translate(82.716875 185.355187)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 18.3125 70.21875 \nL 18.3125 54.6875 \nL 36.8125 54.6875 \nL 36.8125 47.703125 \nL 18.3125 47.703125 \nL 18.3125 18.015625 \nQ 18.3125 11.328125 20.140625 9.421875 \nQ 21.96875 7.515625 27.59375 7.515625 \nL 36.8125 7.515625 \nL 36.8125 0 \nL 27.59375 0 \nQ 17.1875 0 13.234375 3.875 \nQ 9.28125 7.765625 9.28125 18.015625 \nL 9.28125 47.703125 \nL 2.6875 47.703125 \nL 2.6875 54.6875 \nL 9.28125 54.6875 \nL 9.28125 70.21875 \nz\n\" id=\"DejaVuSans-116\"></path>\n <path d=\"M 50.984375 -16.609375 \nL 50.984375 -23.578125 \nL -0.984375 -23.578125 \nL -0.984375 -16.609375 \nz\n\" id=\"DejaVuSans-95\"></path>\n <path d=\"M 9.421875 75.984375 \nL 18.40625 75.984375 \nL 18.40625 0 \nL 9.421875 0 \nz\n\" id=\"DejaVuSans-108\"></path>\n </defs>\n <use xlink:href=\"#DejaVuSans-116\"></use>\n <use x=\"39.208984\" xlink:href=\"#DejaVuSans-114\"></use>\n <use x=\"80.322266\" xlink:href=\"#DejaVuSans-97\"></use>\n <use x=\"141.601562\" xlink:href=\"#DejaVuSans-105\"></use>\n <use x=\"169.384766\" xlink:href=\"#DejaVuSans-110\"></use>\n <use x=\"232.763672\" xlink:href=\"#DejaVuSans-95\"></use>\n <use x=\"282.763672\" xlink:href=\"#DejaVuSans-108\"></use>\n <use x=\"310.546875\" xlink:href=\"#DejaVuSans-111\"></use>\n <use x=\"371.728516\" xlink:href=\"#DejaVuSans-115\"></use>\n <use x=\"423.828125\" xlink:href=\"#DejaVuSans-115\"></use>\n </g>\n </g>\n <g id=\"line2d_37\">\n <path d=\"M 54.716875 196.811438 \nL 74.716875 196.811438 \n\" style=\"fill:none;stroke:#348abd;stroke-linecap:square;stroke-width:1.5;\"></path>\n </g>\n <g id=\"line2d_38\"></g>\n <g id=\"text_20\">\n <!-- val_loss -->\n <g transform=\"translate(82.716875 200.311438)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 2.984375 54.6875 \nL 12.5 54.6875 \nL 29.59375 8.796875 \nL 46.6875 54.6875 \nL 56.203125 54.6875 \nL 35.6875 0 \nL 23.484375 0 \nz\n\" id=\"DejaVuSans-118\"></path>\n </defs>\n <use xlink:href=\"#DejaVuSans-118\"></use>\n <use x=\"59.179688\" xlink:href=\"#DejaVuSans-97\"></use>\n <use x=\"120.458984\" xlink:href=\"#DejaVuSans-108\"></use>\n <use x=\"148.242188\" xlink:href=\"#DejaVuSans-95\"></use>\n <use x=\"198.242188\" xlink:href=\"#DejaVuSans-108\"></use>\n <use x=\"226.025391\" xlink:href=\"#DejaVuSans-111\"></use>\n <use x=\"287.207031\" xlink:href=\"#DejaVuSans-115\"></use>\n <use x=\"339.306641\" xlink:href=\"#DejaVuSans-115\"></use>\n </g>\n </g>\n <g id=\"line2d_39\">\n <path d=\"M 54.716875 211.767687 \nL 74.716875 211.767687 \n\" style=\"fill:none;stroke:#988ed5;stroke-linecap:square;stroke-width:1.5;\"></path>\n </g>\n <g id=\"line2d_40\"></g>\n <g id=\"text_21\">\n <!-- train_acc -->\n <g transform=\"translate(82.716875 215.267687)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-116\"></use>\n <use x=\"39.208984\" xlink:href=\"#DejaVuSans-114\"></use>\n <use x=\"80.322266\" xlink:href=\"#DejaVuSans-97\"></use>\n <use x=\"141.601562\" xlink:href=\"#DejaVuSans-105\"></use>\n <use x=\"169.384766\" xlink:href=\"#DejaVuSans-110\"></use>\n <use x=\"232.763672\" xlink:href=\"#DejaVuSans-95\"></use>\n <use x=\"282.763672\" xlink:href=\"#DejaVuSans-97\"></use>\n <use x=\"344.042969\" xlink:href=\"#DejaVuSans-99\"></use>\n <use x=\"399.023438\" xlink:href=\"#DejaVuSans-99\"></use>\n </g>\n </g>\n <g id=\"line2d_41\">\n <path d=\"M 54.716875 226.723938 \nL 74.716875 226.723938 \n\" style=\"fill:none;stroke:#777777;stroke-linecap:square;stroke-width:1.5;\"></path>\n </g>\n <g id=\"line2d_42\"></g>\n <g id=\"text_22\">\n <!-- val_acc -->\n <g transform=\"translate(82.716875 230.223938)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-118\"></use>\n <use x=\"59.179688\" xlink:href=\"#DejaVuSans-97\"></use>\n <use x=\"120.458984\" xlink:href=\"#DejaVuSans-108\"></use>\n <use x=\"148.242188\" xlink:href=\"#DejaVuSans-95\"></use>\n <use x=\"198.242188\" xlink:href=\"#DejaVuSans-97\"></use>\n <use x=\"259.521484\" xlink:href=\"#DejaVuSans-99\"></use>\n <use x=\"314.501953\" xlink:href=\"#DejaVuSans-99\"></use>\n </g>\n </g>\n </g>\n </g>\n </g>\n <defs>\n <clipPath id=\"p5110a85808\">\n <rect height=\"217.44\" width=\"334.8\" x=\"45.716875\" y=\"24.14175\"></rect>\n </clipPath>\n </defs>\n</svg>\n",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEaCAYAAAD+E0veAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABD4ElEQVR4nO3deVwTd/4/8NfkINxHEg4R8KAeVdZaRfGqF7TWetaqPdYT7GV/a6+1iquLXc9qsbYWt9aiVmtbt6v1u9rqVrytPVQ8qq0HiiwKCCHcECCZz++PkDGBAAmSA3g/Hw8eYebzmZl3BjLvzHxmPh+OMcZACCGEABA5OgBCCCHOg5ICIYQQASUFQgghAkoKhBBCBJQUCCGECCgpEEIIEVBSIBY7duwYOI7DnTt3rFqO4zh88cUXNoqq7Ro+fDjmzJnj6DBIK0NJoRXiOK7Bn44dOzZpvYMGDUJ2djaCg4OtWi47OxuTJ09u0jatRQnIvFdffRVisRhJSUmODoU4OUoKrVB2drbws3v3bgBAamqqMO/MmTMm9auqqixar4uLC4KCgiASWfdvExQUBFdXV6uWIc2nrKwMO3fuxKJFi7B582ZHhwPA8v85Yn+UFFqhoKAg4UculwMA/P39hXkBAQH46KOP8MILL8DHxwfTp08HAPztb3/Dww8/DHd3d4SGhuKVV15BUVGRsN7al48M04cOHcLQoUPh7u6OHj164MCBAybx1P72znEcNm7ciOnTp8PLywshISFYtWqVyTL5+fmYMmUKPDw8EBgYiCVLlmDmzJmIiYl5oH3z+eefo0ePHnBxcUFISAgWL14MrVYrlJ86dQqDBw+Gl5cXvLy88Mgjj+C///2vUL5y5Up07twZMpkM/v7+GDVqFCoqKurd3pdffomoqCj4+PhAqVRizJgxuH79ulB++/ZtcByHf/3rXxg7dizc3d3RuXNnbNu2zWQ9GRkZePLJJ+Hm5obQ0FBs2LDB4vf81VdfoUuXLli8eDEyMjLwyy+/1Kmza9cu9O3bF66urlAoFBg9ejQKCgqE8qSkJPTo0QMymQwBAQF45plnhLKOHTti+fLlJuubM2cOhg8fLkwPHz4ccXFxWLJkCdq1a4ewsDCL9g8A5ObmYvbs2QgMDISrqyu6deuGLVu2gDGGzp07Y+XKlSb1y8rK4O3tjR07dli8j8h9lBTaqHfffReDBg1Camqq8IF2c3PDp59+it9//x3btm3DsWPHMG/evEbX9de//hWLFi3CxYsXERUVhWeffdbkgFLf9ocOHYoLFy4gPj4eixYtwuHDh4Xy2bNn4+LFi9i/fz+OHDmCO3fuYO/evQ/0nr/77jvExsZi+vTpuHz5MhITE5GUlIR3330XAKDVajF+/HhERUUhNTUVqampWLp0Kdzd3QEAe/bswerVq/Hhhx/ixo0bOHToEEaPHt3gNisrK7F48WKkpqbi0KFDEIvFGDNmTJ1vygsXLsSMGTNw6dIlPPfcc5gzZ45wcGSM4emnn0Z+fj6OHTuGffv24T//+Q9SU1Mtet+bNm3CrFmzIJPJ8Nxzz2HTpk0m5Vu3bsW0adMwceJEpKam4ujRo3jyySeh0+kAAAkJCViwYAHmzp2L3377DQcPHkSfPn0s2raxf/3rX8jLy8Phw4dx6NAhi/ZPRUUFhg0bhosXL2Lnzp34/fffsWHDBri7u4PjOLz44otITk6GcW89X3/9NSQSCaZMmWJ1jAQAI63a0aNHGQCWmZkpzAPAYmNjG112z549zMXFhel0OrPrMkzv3r1bWCYnJ4cBYAcPHjTZ3o4dO0ym//KXv5hsq3v37mzhwoWMMcauX7/OALCUlBShvKqqioWEhLDo6OgGY669LWNDhgxhU6ZMMZm3fv165urqyiorK5larWYA2NGjR80uv27dOtalSxdWVVXVYAwNyc/PZwDYqVOnGGOMpaenMwAsMTFRqKPVapmnpyf75JNPGGOMHTp0iAFg165dE+rk5uYyV1dXFhcX1+D2zp8/z1xcXJhKpWKMMfbTTz8xd3d3VlhYKNQJDQ1lr732mtnlS0tLmaurK1u7dm292+jQoQNbtmyZyby4uDg2bNgwYXrYsGGsS5cuwv9SfWrvn88++4zJZDKT/19jOTk5TCqVskOHDgnzBgwYwObNm9fgdkj96Eyhjerfv3+deXv27MHQoUMRHBwMT09P/PnPf0ZVVRVycnIaXFfv3r2F3wMDAyEWi3Hv3j2LlwGA4OBgYZnff/8dADBgwAChXCqVIjIyssF1NubKlSsYOnSoybxhw4ZBo9Hg5s2b8PPzw5w5czBq1CiMHj0aq1evxrVr14S6U6dORXV1NTp06IBZs2Zhx44dKCkpaXCbFy5cwNNPP41OnTrBy8tLuGySkZFhUs94f4jFYgQEBJjsD6VSia5duwp1/P390a1bt0bf86ZNmzB27FgoFAoA+n0aEhIiXM7Lzc1FZmYmnnjiCbPLX7lyBRqNpt5ya/Tt27dOe1Rj++fcuXPo0aMHQkJCzK4zMDAQEyZMENpKLl++jJ9//hkvvvjiA8fbVlFSaKM8PDxMpn/55RdMmTIFQ4cOxbfffovU1FR88sknABpvFHRxcakzj+d5q5bhOK7OMhzHNbgOW9i8eTPOnTuHxx9/HMePH0dERIRwuaV9+/a4evUqtmzZgoCAACxbtgzdunVDZmam2XWVl5fjiSeeAMdx2Lp1K3799VecOXMGHMfV2aeW7A9rGRqY9+7dC4lEIvzcuHGjWRucRSKRyeUbAKiurq5Tr/b/nDX7pyGvvPIK9u7dC5VKhc8++wwDBw5ERERE094MoaRA9E6dOgWlUonly5cjKioKXbt2tfp5hObSo0cPAMBPP/0kzNNqtTh37twDrbdnz544ceKEybzjx4/Dzc0N4eHhwryIiAi89dZbOHDgAOLi4vDpp58KZTKZDE8++STWrFmD3377DeXl5fW2dfzxxx/Iy8vDihUrMHz4cDz88MMoKCiocwBtTI8ePaBSqXDjxg1hnkqlMjmLMeerr76CRCLBhQsXTH6OHTuGS5cu4ZdffkFAQABCQkLwww8/1LttV1fXessBICAgAFlZWSbzzp8/3+j7smT/9O3bF7///nuD/4sjR45EWFgYNm3ahB07dtBZwgOSODoA4hy6deuGvLw8JCcnY8SIETh16hQ2btzokFi6dOmCcePG4bXXXsOmTZvg7++PxMREFBcXW3T28L///Q8XLlwwmRccHIz4+HiMGzcOq1evxqRJk3DhwgUsXboUb7/9NlxcXJCWlobNmzdj3LhxCA0NRVZWFk6ePCk0qiYnJ4PnefTv3x++vr44fPgwSkpKhCRWW4cOHSCTybBhwwa8/fbbuH37NhYuXGj1GVB0dDQeeeQRTJs2DRs2bICLiwsWLFgAqVTa4HKbNm3C008/jT/96U91ygYMGIBNmzYhKioKCQkJePXVVxEYGIjJkyeD53kcPXoUzz33HJRKJd5++20sXboUbm5uePzxx1FRUYHvv/8e8fHxAICYmBhs3LgRTz/9NDp06IBPPvkEGRkZwp1v9bFk/zz//PNYs2YNxo8fjzVr1iA8PBy3bt2CSqXCs88+C0B/VvXSSy9h8eLFcHNzE+aTJnJwmwaxsfoams01xi5evJgFBAQwd3d3Nnr0aPbll18yACw9Pd3susytmzHGxGIx27p1a73bM7f96OhoNnPmTGFapVKxZ555hrm5uTF/f3+2ZMkSNnnyZDZ27NgG3y8Asz+rVq1ijDG2bds21r17dyaVSllwcDBbtGgRq66uZowxlpWVxZ5++mnWvn175uLiwtq1a8fmzJkjNMru3r2bDRw4kPn6+jI3NzfWs2dP9tlnnzUYzzfffMMeeughJpPJWO/evdmxY8dM9o+hofnkyZMmy4WHh7OEhARhOj09nT3++ONMJpOx9u3bs/Xr17Nhw4bV29B8/vz5Og3+xtavX2/S4PzFF1+wXr16MRcXFyaXy9lTTz3FCgoKGGOM8TzP1q9fz7p27cqkUikLCAhgkydPFtZVXFzMpk2bxnx9fZm/vz9LSEgw29BsLtbG9g9jjGVnZ7Pp06czhULBZDIZ69atm0k5Y4zl5eUxqVTK5s6da/b9EstxjNHIa8T56XQ6dO/eHePHj0diYqKjwyFO5sqVK4iIiMCFCxfwyCOPODqcFo0uHxGndOLECeTm5uLRRx9FSUkJPvjgA9y+fRuzZs1ydGjEiVRWVkKlUiE+Ph4jRoyghNAMKCkQp6TT6bB8+XKkpaVBKpUiIiICR48eNXt9nLRdX331FWJjY9GzZ0/8+9//dnQ4rQJdPiKEECKgW1IJIYQIKCkQQggRtPg2hdoPzVhKqVRCpVI1czQPjuKyDsVlPWeNjeKyzoPE1dCYKHSmQAghREBJgRBCiMAul482btyI1NRU+Pj4mH3wiDGGrVu34vz585DJZJg7dy46d+5sj9AIIYQYscuZwvDhw7Fo0aJ6y8+fP4+cnBx89NFHeOmll/DZZ5/ZIyxCCCG12CUp9OjRA56envWWnz17FkOHDgXHcejatSvKysoaHbmLEEJI83OKNgW1Wg2lUilMKxQKqNVqB0ZECCFtU4u7JTUlJQUpKSkAgNWrV5skE2tIJJImL2tLFJd1KC7rOWtsFJd1bBWXUyQFuVxucr9tfn5+vX2xx8TEICYmRphu6n26rfHeY1uiuKzjrHEBzhubcVyG3ncYY8LPg043NL+hZb29vVFYWNgs22/qPHPTjz76KGQyWZP2dUPPKThFUoiMjMTBgwcxePBg3LhxA+7u7vDz83N0WE6DMQae58HzPHQ6nclrQ/Ob43fDq0QiQVVVlck/qPGrcaxNLW9oXn3LisVi6HQ6i9fdnNtu6H1xHGf1CGv24oyxMcaEIUidLTZnJffzR9du4Y1XtJJdOsRbv349fv/9d5SUlMDHxwdTp06FVqsFADzxxBNgjCE5ORkXL16Ei4sL5s6dazI8YkOa8kSzVquFp6cn8vLyzB5YLTnINrVOfeWG3wH9+LbGdR50rF5LiMViiEQi4dXwY5h2cXER4jMeGcvc75bOM1dee1Syhso5joNMJjMZz9cRMZir5+bmhoqKCjijhmKrm+wMv+hHKxJea80zrsuMKhiXGy9rbr0ymQyVVVXgYNinXM2Pud9RU4+rWVfdcmGeEE/t+jAqNy0zXqdYLIFWq7tfT4iZAxOmuZppgGMAMymrqVszHzV1DdvX/9twwo/h3YEzvEsz753jMHCYP5RBdcfCtkRDZwotvpfUpiSFs2fP4vTp080eS2MHVuP59dXx8PBAVVVVveX1rc+SOg3Vb0xLuOQAGE6xAcbrDzw8Y8Lv+vkMvHE5z4zKDGdl9+sL5cI8o/KaMt5oWf0ygKvMDeUVFQAzWn/NOHCM6Q+XJtNG82vPMxxYDOuvW16zDdTahqE+TOtzHAdex5upb9c/nc1wnP4H3P3fOY4z+t10XmP1XFyk+i+x9Szf+Dpr5ovqzqtTD43EZbSOjp39UVlV1KR95PSXj+wtLCwMfn5+qKioaPDAae2BuDk428GXMYbyMh5lxaUoLKyq52Ba9+B4/8BperBs7GBqUm50IL5/kDct51AMHc+bHPgdyfCBFYmqAI7pv+XV+uCjwQ8/YPj2WPfgxsHwb2ZazunXBfPLGE5mDGVu7m7QaDS1tlnPwQrG6+PqWaa+92G6jOk66+4XPz8/FBUVWnhAr+egWussrzk422fSwMtbikobhNUmk0JAQAB69OjhlH9oR+N5hqICHdQqLdQqHQpUWlRqGIASq9YjfEhFgKj2tyQRB5FRueFgJ0zXlEuFeaI69fUHXsDd3Q2aSo2+XGR0EBGhZt79A4rIaFlDXZGIM4rT9BudUN8wXd/6TL4B6g9KznogAZw3NoVSBsaJHR1Gm9cmkwK5r7qKoSBfez8J5GvB65sO4O4hgjJQArlSgo6dFSgpLTJ7cDR74LfBNzZznPUAR0hLRUmhDWGMoaKcQZ1nSAJalBTpG7E5DvD2FaNDZxfI/fWJwNXt/iUxpdIVEJU6KnRCiJ1QUmjFeJ6huFCHApVOSAKaCv1Fd4kE8FNKEBzqAj+lGH5yCSRS+3y7J4Q4L0oKrYi2uu6lIJ3+zl+4unHCGYBcKYa3jxiciJIAIcQUJYUWrKKch1qlRYFKi/w8HYqLDPdSA96+IoR2dIFcKYGfUgJ3D6fo5ooQ4uQoKbQQjGcoKdYnAUObQEW5PgOIxYCfQoIuD8v0SUAhgdSFzgIIIdajpOCktFqGQrUW6jx9e0BBvhbamocXZa4c5EoJOncVQ+4vgbevGCK6FEQIaQaUFJyEpkJ/FnDrah7uZpaiqEAnPIjl5S1C+zAX+NW0B7h7iOx2yychpG2hpOAAjDGUGi4F1TQKl5fqbw0Vizn4yEUI715zKUgphosLtQcQQuyDkoId6HQMhWqd0CisVulQXaU/DXCR6S8FdQzXNwp37hKIgoJ8B0dMCGmrKCnYQGUlf//ZgDwtigp0MHR06uElQrv2Uvgp9e0BHp6ml4LEYrosRAhxHEoKD4gxhrJSvuaOIH0iKCvRZwCRCPDxE6NT1/uXgmQyuhRECHFelBSsxOtMO4xTq7SoqtRfCpK6cJArxQjrpG8U9pWL6Zs/IaRFoaTQiKoq3qSbiEK17n6HcZ4iBLQzPCUsgac33RVECGnZKCkYMYwdoFbpoM7TNwqXFN/vMM7HT4yO4TLI/cXwU5h2GEcIIa1Bm04Khg7jjNsD9GMHABKp/inh4A4ukCvF8JVLIJHQWQAhpHVrk0kh5241zp66i9ycCtQMOww3d04YO0CulMDLhy4FEULanjaZFKqrGKqqeIR1vt9hnJs7XQoihJA2mRRCO7ng0X40YhchhNRGX48JIYQIKCkQQggRUFIghBAioKRACCFEQEmBEEKIgJICIYQQASUFQgghAkoKhBBCBJQUCCGECCgpEEIIEVBSIIQQIqCkQAghRGC3DvEuXLiArVu3gud5REdHY+LEiSblKpUKSUlJKCsrA8/zeOGFF9CnTx97hUcIIQR2Sgo8zyM5ORmLFy+GQqFAfHw8IiMjERISItTZvXs3Bg4ciCeeeAJ37tzBqlWrKCkQQoid2eXyUVpaGoKCghAYGAiJRIJBgwbhzJkzJnU4jkN5eTkAoLy8HH5+fvYIjRBCiBG7nCmo1WooFAphWqFQ4MaNGyZ1pkyZguXLl+PgwYOorKzEkiVLzK4rJSUFKSkpAIDVq1dDqVQ2KSaJRNLkZW2J4rIOxWU9Z42N4rKOreJymkF2fvzxRwwfPhzjxo3D9evXsWHDBiQmJkIkMj2ZiYmJQUxMjDDd1IFylErnHGSH4rIOxWU9Z42N4rLOg8QVHBxcb5ldLh/J5XLk5+cL0/n5+ZDL5SZ1jhw5goEDBwIAunbtiurqapSUlNgjPEIIITXskhTCw8ORnZ2N3NxcaLVanD59GpGRkSZ1lEolLl++DAC4c+cOqqur4e3tbY/wCCGE1LDL5SOxWIzY2FisWLECPM9jxIgRCA0Nxa5duxAeHo7IyEjMmDEDmzZtwnfffQcAmDt3LjiOs0d4hBBCatitTaFPnz51bjF99tlnhd9DQkKwbNkye4VDCCHEDHqimRBCiICSAiGEEAElBUIIIQJKCoQQQgSUFAghhAgoKRBCCBFQUiCEECKgpEAIIURASYEQQoiAkgIhhBABJQVCCCECSgqEEEIElBQIIYQIKCkQQggRUFIghBAisDgpbNu2Dbdv37ZhKIQQQhzN4kF2eJ7HihUr4O3tjcceewyPPfYYFAqFLWMjhBBiZxYnhdjYWMyaNQvnz5/HyZMnsWfPHnTp0gVDhw5FVFQUXF1dbRknIYQQO7BqOE6RSIS+ffuib9++yMzMxEcffYSNGzfis88+w+DBgzF16lTI5XJbxUoIIcTGrEoK5eXl+Pnnn3Hy5ElkZGQgKioKcXFxUCqV2L9/P1auXIn333/fVrESQgixMYuTQmJiIi5evIiHH34Yjz/+OPr16wepVCqUz5gxA7NmzbJFjIQQQuzE4qTQpUsXxMXFwdfX12y5SCTC5s2bmysuQgghDmDxLam9evWCVqs1madSqUxuU5XJZM0WGCGEEPuzOCls2LABOp3OZJ5Wq8XHH3/c7EERQghxDIuTgkqlQmBgoMm8oKAg5OXlNXtQhBBCHMPipCCXy3Hr1i2Tebdu3YKfn1+zB0UIIcQxLG5oHjNmDNauXYvx48cjMDAQ9+7dw759+zBp0iRbxkcIIcSOLE4KMTEx8PDwwJEjR5Cfnw+FQoEZM2ZgwIABtoyPEEKIHVn18NrAgQMxcOBAW8VCCCHEwaxKCoWFhUhLS0NJSQkYY8L8kSNHNntghBBC7M/ipPDrr79iw4YNaNeuHTIzMxEaGorMzEx0796dkgIhhLQSFieFXbt2Ye7cuRg4cCBmz56NNWvW4OjRo8jMzLRlfIQQQuzI4qSgUqnqtCcMGzYML730EmbMmNHo8hcuXMDWrVvB8zyio6MxceLEOnVOnz6Nb775BhzHoUOHDnj99dctDY8QQkgzsDgpeHt7o7CwEL6+vvD398f169fh5eUFnucbXZbneSQnJ2Px4sVQKBSIj49HZGQkQkJChDrZ2dnYu3cvli1bBk9PTxQVFTXtHRFCCGkyi5NCdHQ0rl69igEDBmDMmDF49913wXEcxo4d2+iyaWlpCAoKEp6IHjRoEM6cOWOSFA4fPoxRo0bB09MTAODj42PteyGEEPKALE4K48ePh0ikfwB62LBh6NmzJzQajcmBvT5qtdpk6E6FQoEbN26Y1MnKygIALFmyBDzPY8qUKejdu3eddaWkpCAlJQUAsHr1aiiVSkvfggmJRNLkZW2J4rIOxWU9Z42N4rKOreKyKCnwPI/p06dj27ZtwhgKzR0Mz/PIzs5GQkIC1Go1EhIS8P7778PDw8OkXkxMDGJiYoRplUrVpO0plcomL2tLFJd1KC7rOWtsFJd1HiSu4ODgesss6vtIJBIhODgYJSUlTQpALpcjPz9fmM7Pz68zbKdcLkdkZCQkEgkCAgLQrl07ZGdnN2l7hBBCmsbiDvGGDBmC9957D8eOHcNvv/2Gy5cvCz+NCQ8PR3Z2NnJzc6HVanH69GlERkaa1Onfvz+uXLkCACguLkZ2dnadXlkJIYTYlsVtCj/88AMA4JtvvjGZz3Fco2MqiMVixMbGYsWKFeB5HiNGjEBoaCh27dqF8PBwREZG4pFHHsHFixfx5ptvQiQSYdq0afDy8mrCWyKEENJUHDPur6IFMjRQW6s1Xie0JYrLOs4aF+C8sVFc1nFomwIhhJC2weLLR6+++mq9Zf/85z+bJRhCCCGOZXFS+Mtf/mIyXVBQgO+//x6DBw9u9qAIIYQ4hsVJoUePHnXm9ezZEytWrMBTTz3VrEERQghxjAdqU5BIJMjNzW2uWAghhDiYVV1nG6usrMT58+fx6KOPNntQhBBCHMPipGD8RDIAyGQyjB07FkOHDm32oAghhDiGxUlh7ty5toyDEEKIE7C4TWHv3r1IS0szmZeWlob/+7//a/agCCGEOIbFSeH777+v0012SEgIvv/++2YPihBCiGNYnBS0Wi0kEtOrTRKJBFVVVc0eFCGEEMewOCl07twZ//3vf03m/fDDD+jcuXOzB0UIIcQxLG5onjlzJpYvX44TJ04gMDAQ9+7dQ2FhIZYsWWLL+AghhNiRxUkhNDQUH374Ic6dO4f8/HxERUWhb9++cHV1tWV8hBBC7MjipKBWq+Hi4mLS11FpaSnUanWdUdQIIYS0TBa3KaxduxZqtdpknlqtxvvvv9/sQRFCCHEMi5NCVlYWwsLCTOaFhYXh7t27zR4UIYQQx7A4KXh7eyMnJ8dkXk5ODg2ZSQghrYjFbQojRoxAYmIinnvuOQQGBiInJwe7du3CyJEjbRkfIYQQO7I4KUycOBESiQQ7duxAfn4+FAoFRo4ciXHjxtkyPkIIIXZkcVIQiUQYP348xo8fL8zjeR7nz59Hnz59bBIcIYQQ+7I4KRjLyMjA8ePHcerUKeh0OiQnJzd3XIQQQhzA4qRQVFSEkydP4sSJE8jIyADHcZg9ezZGjBhhy/gIIYTYUaNJ4aeffsLx48dx8eJFtG/fHkOGDMH8+fPxt7/9DQMGDICLi4s94iSEEGIHjSaF9evXw9PTE2+++Sb69+9vj5gIIYQ4SKNJ4dVXX8Xx48exbt06hIeHY8iQIRg0aBA4jrNHfIQQQuyo0aQwfPhwDB8+HHl5eTh+/DgOHjyI7du3AwDOnz+PoUOHQiSy+Bk4QgghTszihmZ/f39MnjwZkydPxtWrV3H8+HF8/vnn+Oqrr7Bp0yZbxkgIIcROGk0Kly5dQo8ePUxGXevevTu6d++O2NhYnDlzxqYBEkIIsZ9Gk8K+ffvw4Ycfolu3bujTpw/69OkjdJUtlUoxaNAgmwdJCCHEPhpNCn/7299QWVmJ3377DefPn8eePXvg4eGBRx99FH369EHXrl2pTYEQQloJi9oUZDIZIiMjERkZCQD43//+h/Pnz+Prr7/G3bt30bNnT4wZMwZdunSxabCEEEJsq0ndXISFhSEsLAwTJkxAeXk5Ll68iIqKigaXuXDhArZu3Qqe5xEdHY2JEyearffzzz9j3bp1WLVqFcLDw5sSHiGEkCayOClcvnwZAQEBCAgIQEFBAXbu3AmRSIQXXngBAwcObHBZnueRnJyMxYsXQ6FQID4+HpGRkQgJCTGpV1FRgQMHDtAZByGEOIjFjQHJyclC28H27duh0+nAcZxFt6OmpaUhKCgIgYGBkEgkGDRokNm7lnbt2oUJEyZAKpVa8RYIIYQ0F4uTglqthlKphE6nw8WLF/Hyyy/jxRdfxPXr1y1aVqFQCNMKhaLOeM+3bt2CSqWibrgJIcSBLL585ObmhsLCQmRmZiIkJASurq7QarXQarUPHATP89i+fTvmzp3baN2UlBSkpKQAAFavXg2lUtmkbUokkiYva0sUl3UoLus5a2wUl3VsFZfFSeHJJ59EfHw8tFotZs2aBQC4evUq2rdv3+iycrkc+fn5wnR+fr7wrAMAaDQaZGZm4t133wUAFBYWYs2aNXjnnXfqNDbHxMQgJiZGmFapVJa+BRNKpbLJy9oSxWUdist6zhobxWWdB4krODi43jKrhuPs378/RCIRgoKCAOgP9q+88kqjy4aHhyM7Oxu5ubmQy+U4ffo05s2bJ5S7u7ubDNSzdOlSTJ8+ne4+IoQQO7PqllTj7HL58mWIRCL06NGj0eXEYjFiY2OxYsUK8DyPESNGIDQ0FLt27UJ4eLjw/AMhhBDHsjgpJCQk4Pnnn0f37t2xd+9efPfddxCJRBg1ahQmTZrU6PKGLjKMPfvss2brLl261NKwCCGENCOL7z7KzMxE165dAQCHDx9GQkICVqxYgUOHDtksOEIIIfZl8ZkCYwwAkJOTAwDCg2dlZWU2CIsQQogjWJwUunXrhi1btqCgoAD9+vUDoE8QXl5eNguOEEKIfVl8+ei1116Du7s7OnTogKlTpwIAsrKy8NRTT9ksOEIIIfZl8ZmCl5cXXnjhBZN59PQxIYS0LhYnBa1Wiz179uDEiRMoKCiAn58fhg4dikmTJpmMykYIIaTlsvho/sUXX+DmzZt48cUX4e/vj7y8POzevRvl5eXCE86EEEJaNouTws8//4y1a9cKDcvBwcHo1KkT5s+fT0mBEEJaCYsbmg23pBJCCGm9LD5TGDhwIN577z1MnjxZ6Ihp9+7djQ6wY2+MMWg0GvA8D47j6q137949VFZW2jEyyzhLXIwxiEQiuLq6NrgfCSGti8VJYdq0adi9ezeSk5NRUFAAuVyOQYMGNUvX2c1Jo9FAKpU22vgtkUggFovtFJXlnCkurVYLjUYDNzc3R4dCCLETi5OCRCLBs88+a9JfUVVVFaZPn45p06bZJLim4Hme7oZqJhKJxCnOWggh9mNxm4I5znhZwRljaslofxLStjxQUiCEENK6NHqd5fLly/WWOVt7AiGEkAfTaFL45z//2WC5M45d6khFRUX49ttvrX52Y/r06fj444+hUCisWu6NN95ATEwMxo4da9VyhBBiTqNJISkpyR5xtBrFxcXYvn17naSg1WobbADfsWOHjSMjhJDGterbdPivN4Nlppsv47gmPZDHhXaC6LkX6y1fuXIlMjIy8Pjjj0MqlUImk8HHxwdpaWk4deoUYmNjkZWVhcrKSsTFxQl3bkVFReHAgQPQaDR4/vnn0b9/f5w9exZBQUHYsmWLRbeFnjx5EsuWLYNOp8MjjzyCVatWQSaTYeXKlfjhhx8gkUgwdOhQ/P3vf8e+ffvwwQcfQCQSwdvbG3v27LF6XxBCWp9WnRQcYdGiRbh27RoOHTqE06dPY8aMGThy5AjCwsIAAImJifDz80NFRQXGjBmDp556CnK53GQd6enpSEpKwtq1a/Hyyy/j+++/xzPPPNPgdjUaDd58801h3Ot58+Zh+/bteOaZZ3DgwAGcOHECHMehqKgIALB+/Xrs3LkT7dq1E+YRQkirTgoNfaOXSCR2aSjv3bu3kBAAYMuWLThw4AAA/XgU6enpdZJCaGgoIiIiAAC9evVCZmZmo9u5efMmwsLCEB4eDgCYMmUKPv/8c8yePRsymQxvv/02YmJiEBMTAwCIjIzEm2++iXHjxmH06NHN8l4JIS0f3ZJqY+7u7sLvp0+fxsmTJ7Fv3z6kpKQgIiLC7MNhMplM+F0sFkOn0zV5+xKJBN999x3GjBmDlJQU/PnPfwYAvPfee3jnnXeQlZWF0aNHQ61WN3kbhJDWo1WfKdSHlZdBW1oM5uUDuLo16wNaHh4eKC0tNVtWUlICHx8fuLm5IS0tDampqc223fDwcGRmZiI9PR2dOnXC7t27MWDAAJSVlaGiogLR0dHo16+f0FfV7du30adPH/Tp0wdHjx5FVlZWnTMWQkjb0yaTAngerFIDlJcCLjIwbz/Aw7NZkoNcLke/fv0wcuRIuLq6mtyyO3z4cOzYsQPDhg1DeHh4s45c5+rqinXr1uHll18WGpqnT5+OwsJCxMbGorKyEowxJCQkAACWL1+O9PR0MMYwZMgQ9OzZs9liIYS0XBxr4X1iZ2VlmUyXl5ebXLKpj1gkgraoACguBKqrAIkU8PIBPL3BObBDOnu1dVjKsD8NPeM6G4rLes4aG8VlnQeJKzg4uN6ytnmmAIATicB5+YB5egMV5frkUKACitRgnj6Atw84idTRYRJCiF212aRgwHEc4O4BuHvoLykVFwIl+h/m7gl4+4KTuTo6TCxatAhnzpwxmTdnzhyTXmsJIeRBtfmkYIyTuQL+QWDaan1yKC0GykrAXN0Bb1/Azd1hvYauXLnSIdslhLQtlBTM4CRSQO4P5iPXJ4biQiA3C5DKwHx8AXdPcCK6m5cQ0vpQUmgAJxYDPn5g3j5AWak+OajuAeJ8/e2sXj4ObZQmhJDmRknBAhwnAjy9wTy8AE0FUFwAFOYDRQX6hmpvX3BSapQmhLR8lBSswHEc4OYOuLmDVVXWtDsUASVFYO4egI+fUzRKE0JIU9GF8SbiXGTglIFA+46Aj6/+DCI7Eyz7Dlh5qcU9sHbp0qXesszMTIwcObJ5AiaEEAvQmcID4iQSwE9Zq1E6G5C6gHn7Ah5e1ChNCGkx7JYULly4gK1bt4LneURHR2PixIkm5fv378fhw4chFovh7e2NV199Ff7+/g+0zc/O3kN6gcZsGdfE8RQ6+bliTmRg3fWJRIC3L1ZsSEKwUoFZ48cA+blIXLsWEncPnD6XiqLiYmi1WrzzzjsYNWqUVdvVaDSIj4/HpUuXIBaLkZCQgMGDB+PatWt46623UFVVBcYYPv30UwQFBeHll19GdnY2eJ7H66+/jgkTJlj9XgkhbY9dkgLP80hOTsbixYuhUCgQHx+PyMhIhISECHU6duyI1atXQyaT4YcffsAXX3yBN9980x7hNasJEyYgISEBs156GajUYP+RY9iZ+B5ixz8Fr8B2UGt5jJ/0DJ544gmrnnnYtm0bOI7D4cOHkZaWhueffx4nT57Ejh07EBcXh0mTJqGqqgo6nQ5HjhxBUFCQMJpbcXGxrd4uIaSVsUtSSEtLQ1BQEAID9d+wBw0ahDNnzpgkBcP4AYD+OvvJkycfeLvmvtEb2KqPoYiICKhUKty7dw/5+fnwUSjgH9EbS/++BL+cOQMRxyE7Oxu5dzIREBJq8XrPnDmD2bNnAwAeeughhISE4NatW+jbty8++ugjZGdnY/To0ejcuTO6d++Of/zjH1ixYgViYmIQFRXV7O+TENI62SUpqNVqkwHpFQoFbty4UW/9I0eOoHfv3mbLUlJSkJKSAgBYvXq1SS+kAHDv3r0Gx0I2Zmk9a40fPx4HDhxAbm4uJk6ciP8cOICC8gocOnwE4opS9B8Rg8o7t8FJ9G0NYrHY5KzBEJe45hkIiUQCjuMgFouFMsP0lClT0K9fPxw6dAgzZszA2rVr8dhjjyElJQWHDx8Wpt9+++0mvReZTAalUgmJRFJnXzsDist6zhobxWUdW8XldA3NJ06cwK1bt7B06VKz5cajhwGo00tgZWWlcDBtiC17Ix07dizmz58PtVqN3bt3Y9++fVAoFBBJpTj16++4k5MD+CrBeB3AeGgzbuq70fD0gtRFJsRlGFxHq9WiX79++Pe//42BAwfi5s2buHPnDjp27CiMuDZ79mxkZmbi8uXL6NSpE3x9fTFx4kR4eHjgq6++avJ7rayshEqlapU9RdqSs8YFOG9sFJd1WnQvqXK5HPn5+cJ0fn6+2QFdLl26hG+//RZLly6FtAU/DNatWzeUlZUJl8wmTZqEmTNnIjo6Gr169cJDDz0EztMLCA4BOBEglgDqPKBQDZ2PL5iHt/6uJiMzZ85EfHw8oqOjIRaL8cEHH0Amk2Hfvn3YvXs3JBIJAgIC8Je//AUXL17E8uXLwXEcpFIpVq1a5aA9QQhpaewynoJOp8Prr7+Ov//975DL5YiPj8e8efMQGnr/mnp6ejrWrVuHRYsWoV27dhavu6njKTjbuAVMU6G/nbWiTD/Dw0v/pLSLrMHlbI3GU2gaZ40LcN7YKC7rtOgzBbFYjNjYWKxYsQI8z2PEiBEIDQ3Frl27EB4ejsjISHzxxRfQaDRYt24dAP0bXrBggT3Ccwqcqxvg6gYx46FV5+ufeSgtBnNzB7z9mn3YUEIIMcdubQqG8YCNGY8FsGTJEnuF4nT++OMPzJs3D8D95ydcXFywf+cOoKQIuHe3ZthQ35phQ+lhOEKIbThdQ3Nb9PDDD+PQoUMA6l7WYt6++rGkiwr0PbQW5OvnOXjYUEJI60RJwclxIqMeWusMG1rTQysNG0oIaSaUFFoI88OGGnpodZ5hQwkhLRslhRbIdNjQIn333U4ybCghpGWjpNCC6YcNVYL5+OnvViopqhk2lHpoJYQ0DR0xmllRURG2bdtm9XLTp09HUVFRk7bJicXgfPyA9h0AZRDAcUB+LnD3NlihGqzmyWhCCGlMqz5TuJxajuJC8wfEpnad7e0rRkSf+h+OKy4uxvbt2zFr1iyT+VqttsG+lgw9mj4IjuMATy8wD8+aYUMLjYYNrXkYTurywNshhLRerTopOMLKlSuRkZGBxx9/HFKpFDKZDD4+PkhLS8OpU6cQGxuLrKwsVFZWIi4uDtOmTQMAREVF4cCBA9BoNHj++efRv39/nD17FkFBQdiyZQvc3NzMbm/nzp3YuXMnqqqq0KlTJ3z00Udwc3NDXmkZFi5agozbtwFeh1Vvv4HIiAh8c/goPtn5FTiRCA8//DA2bNhgx71DCHF2rTopNPSN3lbdXCxatAjXrl3DoUOHcPr0acyYMQNHjhxBWFgYACAxMRF+fn6oqKjAmDFj8NRTT9XpByo9PR1JSUlYu3YtXn75ZXz//fd45plnzG5v9OjR+POf/wwAeO+99/DVV18hNjYWS5YswYABA5CcnAydTofSoiJcu3kDH27+DP/3yceQB7ZDAQ8wxqhRmhAiaNVJwRn07t1bSAgAsGXLFhw4cACAvt+m9PT0OkkhNDRUGF+iV69eyMzMrHf9165dw5o1a1BcXIyysjIMGzYMAPDjjz/iww8/BKDvZsRHLsfuvVcwdsJEyDt3AYoL4aetBu5mgHn7AZ7UKE0IoaRgc8ad850+fRonT57Evn374ObmhsmTJ6OysrLOMjLZ/U7wxGIxNBrzQ4oCwJtvvonk5GT07NkTu3btwk8//dRwQBwHztsXzMsHKC8DigsAdS5QmK+f5+0DTkz/FoS0VfTVsJl5eHigtLTUbFlJSQl8fHzg5uaGtLQ0pKamPvD2SktLERgYiOrqanz77bfC/CFDhmD79u0A9L3UFhcXY/Dgwdi/fz/UajU4jkNhVTUQFKL/cXXTd6Vx5zaYKhesquqBYyOEtDz0lbCZyeVy9OvXDyNHjoSrq6vJyEjDhw/Hjh07MGzYMISHh9fpILAp5s+fj7Fjx0KhUODRRx8VEtI//vEPvPPOO/j6668hEomwatUqREZGYt68eZg8eTJEIhEiIiKwfv16fUJwdQOrrtLfsVRaApQWgbl5gPEMrJ5GbkJI62OX8RRsqbWMp2DgDHExnRYoKQZKClF2/Q+4/XQY3mOnoFTqCshc9UlE5gq4ugOuroBE6rDG6tbY172tOWtsFJd1WvR4CqRl4cQSwFeufypaqwOO7UdxUgOjt4nFRsnCzShpuOm75DAzHzJXcIakYjK/powavQlxCEoKLcSiRYtw5swZk3lz5swxGZOiuXEiEUSB7SF6Nwl+mlIUZN3VPxRXqdGPFFdZIUyjZpoZT6tKwIQ6FUCtdooGT1FdZHUTjasrOJlbTSJxB2SuKJMrwOv4mgRUN/E4w9kMIS0JJYUWYuXKlQ7bNicSQRLWGZy79/15TVgP43WARmOSRMwmGY2m5nd9PSGxlJaAqXLvL6+pQCnj76+/oY03djZTO6G46ucZRsSru6wMnIjGsyCtT5tMCppqHpWVVQDjIeY4iESAiOMg5vSvIg70rdIGOJFY6P67TlkT1scYg9LbG6qsO6ZJpiapME3d5GOSZCo1gKpY3xV5M5/NFPn4gudERknGrSbJGNc3vnzmBq6BblAIsZc2+V9YruWhLq9usI6I4yAWGZJETcIQ3U8cQgIRQZ9YKKHYHcdx4GQycF4+gJdP3fImrJPpdEZnMqZJhZk5wzEkISHRlBSDqXJRdfs6WHm5fp6lZzMSqXCGYpxI4GrmjKXmhzOuW6ucBl8iTdEmk4KfqxhKTxkqq6rBM4BnDDoG8DwDzwCdmWktD+iqefAW3KxlnFCEhFGTUGpPGxKJWMQ16SBGmhcnbp6zGcOdIYwx/dlHZblwOex++4sG0JSbuWxm1DZTUQYUqEwvr/GWJhmJaYKpSRqF3jVnMUaXyfRnLTVnMrLaSaamTEpJpi1ok0mBq/n2LxVbf4cLY0xIJIaEwfNGicUooehqyqt5Bl01LEooYlFlvWci5i51Gc5gRHR24pQ4jgNkMv2Pd62yJqyPMQZUV9U6UzFONMbT98uFpFJRDm1JEVhZyf0kZNS1esPtMpI6ZypCu0ytM5v7ZzK16xv9To3/TqlNJoUHwdUciMVN+EibSyiP9OiOs7/9IUwDHLQ6vuZshaFay6DjG08oHGoljNpnImYudYlF938nLQPHcfq2DBeZ+XIL1mF8fztjDNBWmyQW46TCaiUdIckYJ6SiAtNp3f3nbKxp/M93c4MOnP4MRyLVJyGpVH+LtER6f35jr2KJ/qxGLAWkEv2rUKee5cQSQCymJIVWnhROnDiBvLw8s2VNHU/B398fQ4cObVI89SUUH9f7f4b6Hl4zTihmL3UxJpyd8IxBxzNU8feXaSwukdGlLeNkkVeowa1MDYLyeFSWl0Ii4iAVc8KrVCSqeeWEV4nRNCUc58ZxHCB10f80V7tMdbVpcjFu5DeXfGqSjEjEAeXl+iRVqQGqqwGdVr8+nVY/X2v0qqv/Ic8mPZHLcUIiglEiUslcoeM4swmFM65fa7n6XrlaCQwWJjB7JaxWnRQcYeXKlQgODhYG2UlMTIRYLMbp06dRVFQErVaLd955B6NGjWp0XWVlZZg9e3ad5aQAvvnmG2zatAkAhHER8vLysHjhQmRkZAAAVq1ahX79+gkJRWdILMbJo+byl84o6VTz9xNMekElNl8sApDbpP0h5mCULET6V6MEYvxqfr7I7HzDPHkBUFFWYlQmanCdErrUZnOcVKo/0Hl61y1rYDk/K5/QZTyvv/RlkiwMCaMaqDa8miYVVju5mHvVaYXlJCIRdOVlpuWaCkBbDVbfctr6b2RpchcSYolJkqiY+f+AP/Vr6trqRd1cNLPLly8jISEBu3fvBqDv72jnzp3w9vaGl5cX1Go1xo0bh1OnToHjOHTp0gU3btwwG5dWq0VFRUWd5a5fv464uDj85z//gVwuR0FBAfz8/PDKK6+gb9++ePHFF6HT6VBWVgZv77ofTGuUlpaBl8jg4umDXJUa1TxDtY6hmudrXhm0Na/CtNHv1TrDNG9S5/58ZmY+X2c+34z/pRIRIBGJIBVBSFQNne0YJxxhfj11DElI4euDirLSOklQYmYbEpH+Up69tMZuG2ypKXExxvQJy9wZTgOvzIKkZqjr+8QEFAeFNuk9UTcXdhQREQGVSoWcnBzk5+fDx8cHAQEBWLp0KX755RdwHIecnBzk5eUhICCgwXUxxrB69eo6y/34448YO3asMA6Dn58fgLpjKDxoQgD0bROerhIofd3gqjV/HdsedIZkUysJeXr7IDe/QEhS9Sca02RmWFd9SapKy1DG8zXbMkpSRnUbTlRZDRXWIeJQb/IQko1wtlWT1IzmN5R0TJfnoCwTo6yk7H6iEwFSo+RovA66xbppOM7QNlLTOG/pclZsw0WpBGyQRCkp2MDYsWPx3XffITc3F+PHj8eePXuQn5+PAwcOQCqVIioqyuw4CrU1dbnWSFzzbbp2WlIqPeCNCofEpKuVWO4nKx4e3j5Q5RfUOXOq73fjRKU1WZ9pEiuv0pkkNHOJsvGTqrsWv0cOMEk45hKN2d9rnVlJGllGKuLgVyJCeWmZkCDFhrOo2tMiDpKati/DtJiSV7OhpGAD48ePx/z586FWq7F7927s27cPSqUSUqkUP/74I+7cuWPRekpKSswuN3jwYMTFxeGll14yuXxkGEOhOS8fkfoZEpWrmU+RUukFldgxCVxnJlEYJxIPL2+oCgrqJKfar5YmNK2Oh0bLUMrrGly+8UuAlicrc8RmEsX9xMJBImpguoE6nh7FqNJoaubXlHPGSQpCfUvriEWoVV6zHGdo93JckqOkYAPdunVDWVkZgoKCEBgYiEmTJmHmzJmIjo5Gr1698NBDD1m0nvqW69atm9lxEeobQ4G0LYZkVd+nW6n0hsrF/oMombsEaJw0PL19kK8ugNbwjA+vv4tOy/S3ZWsN07z+BgmTefXU0fL6Gyu0zDAfRvUZNFoGHc/X1DVfR8dKhNvEm7NtqzHGScLwNzWcIYlFHF4axNBb0fyJgxqanYyzxWXYn62pEdAenDUuwHljawlx8TXJxzSJmJtnvo6QaGoSn7kkdr9+w3Um9wlDZw9dI9GbRw3NhBDSDEQcB5EYkDpBpzRKpZ9NkiglBSfwxx9/YN68eQDuP1Qnk8mwf/9+B0dGCGlr7JYULly4gK1bt4LneURHR2PixIkm5dXV1fj4449x69YteHl54Y033mj0lk1zWuLVsIcffhiHDh0C4HyXj1ri/iSENJ1dxjzkeR7JyclYtGgRPvjgA7N34Bw5cgQeHh7YsGEDxowZg507dzZpWyKRyKkOqi2ZVquFiIbFJKRNscuZQlpamnAnDgAMGjQIZ86cQUhIiFDn7NmzmDJlCgBgwIAB2LJlCxhjVt+W5erqCo1Gg8rKygaXlclkTnnPv7PExRiDSCSCq6vlD94QQlo+uyQFtVoNhUIhTCsUCpOuHWrXEYvFcHd3R0lJSZ377FNSUpCSkgIAWL16NZRKZZNicrbLNAbOHFdT97UtUVzWc9bYKC7r2CquFtfQHBMTg5iYGGG6qa3vLeH2N2dCcVnHWeMCnDc2iss6DxJXQ7ek2uWCsVwuR35+vjCdn58v9Ntjro5Op0N5eTm8vLzsER4hhJAadkkK4eHhyM7ORm5uLrRaLU6fPl3nSdu+ffvi2LFjAICff/4ZPXv2pL5MCCHEzuz2RHNqaio+//xz8DyPESNGYNKkSdi1axfCw8MRGRmJqqoqfPzxx0hPT4enpyfeeOMNoWGaEEKInbA2asGCBY4OwSyKyzoUl/WcNTaKyzq2iotuQieEECKgpEAIIUTQZpOC8W2tzoTisg7FZT1njY3iso6t4mrxXWcTQghpPm32TIEQQkhdlBQIIYQIWlw3F9ayV5fdzR3XsWPHsGPHDuHJ7yeffBLR0dE2j2vjxo1ITU2Fj48PEhMT65QzxrB161acP38eMpkMc+fORefOnR0e15UrV7BmzRrhbxcVFYXJkyfbNCaVSoWkpCQUFhaC4zjExMTgqaeeMqnjiP1lSVyO2F9VVVVISEiAVquFTqfDgAEDMHXqVJM6jvg8WhKXoz6PgL6X6YULF0Iul2PhwoUmZTbZXza50dVJ6HQ69v/+3/9jOTk5rLq6mv31r39lmZmZJnUOHjzINm3axBhj7NSpU2zdunVOEdfRo0fZZ599ZvNYarty5Qq7efMme+utt8yWnzt3jq1YsYLxPM+uXbvG4uPjnSKuy5cvs1WrVtklFgO1Ws1u3rzJGGOsvLyczZs3r87f0RH7y5K4HLG/eJ5nFRUVjDHGqqurWXx8PLt27ZpJHUd8Hi2Jy1GfR8YY27dvH1u/fr3Zv5ct9lervnxk3GW3RCIRuuw2dvbsWQwfPhyAvsvuy5cv23xgGUvicpQePXrA09Oz3vKzZ89i6NCh4DgOXbt2RVlZGQoKChwelyP4+fkJ3/rd3NzQvn17qNVqkzqO2F+WxOUIHMcJXbHrdDrodLo6Xdk44vNoSVyOkp+fj9TU1HrPSmyxv1r15aPm7LLb3nEBwC+//II//vgD7dq1w8yZM52i+161Wm0Sh0KhgFqthp+fnwOj0rt+/Trmz58PPz8/TJ8+HaGhoXbbdm5uLtLT0/HQQw+ZzHf0/qovLsAx+4vneSxYsAA5OTkYNWoUunTpYlLuiM+jJXEBjvk8btu2DdOmTUNFRYXZclvsr1Z9ptCS9e3bF0lJSXj//ffRq1cvJCUlOTokp9apUyds3LgRa9euxZNPPom1a9fabdsajQaJiYmYNWsW3N3d7bbdxjQUl6P2l0gkwtq1a/HJJ5/g5s2b+N///meX7Tamsbgc8Xk8d+4cfHx87NJmZ6xVJwVn7bLbkri8vLwglUoBANHR0bh165ZNY7KUXC436cPdXOyO4O7uLlwC6NOnD3Q6HYqLi22+Xa1Wi8TERDz22GOIioqqU+6o/dVYXI7aXwYeHh7o2bMnLly4YDLf0V3o1xeXIz6P165dw9mzZ/Haa69h/fr1uHz5Mj766COTOrbYX606KThrl92WxGV83fns2bMmQ5c6UmRkJE6cOAHGGK5fvw53d3enuHRUWFgoXEtNS0sDz/M2P5gwxvDJJ5+gffv2GDt2rNk6jthflsTliP1VXFyMsrIyAPo7fi5duoT27dub1HHE59GSuBzxeXzhhRfwySefICkpCW+88QYiIiIwb948kzq22F+t/olmZ+2yu7G4vvzyS5w9exZisRienp6YM2dOnX9UW1i/fj1+//13lJSUwMfHB1OnThWGB33iiSfAGENycjIuXrwIFxcXzJ07F+Hh4Q6P6+DBg/jhhx8gFovh4uKCGTNmoFu3bjaN6erVq/j73/+OsLAw4YP4/PPPC2cGjtpflsTliP2VkZGBpKQk8DwPxhgGDhyIyZMnO/zzaElcjvo8Gly5cgX79u3DwoULbb6/Wn1SIIQQYrlWffmIEEKIdSgpEEIIEVBSIIQQIqCkQAghREBJgRBCiICSAiF2MnXqVOTk5Dg6DEIa1Kr7PiKkPq+99hoKCwshEt3/XjR8+HDExcU5MCrz/vvf/yI/Px8vvPACEhISEBsbiw4dOjg6LNJKUVIgbdaCBQvQq1cvR4fRqFu3bqFPnz7geR537951mqfbSetESYGQWo4dO4bDhw+jY8eOOHHiBPz8/BAXF4c//elPAPQ9U27evBlXr16Fp6cnJkyYIAyizvM89u7di6NHj6KoqAjt2rXD/PnzhR41L126hJUrV6K4uBhDhgxBXFxco90S3Lp1C5MnT0ZWVhb8/f0hFottuwNIm0ZJgRAzbty4gaioKCQnJ+PXX3/F+++/j6SkJHh6euLDDz9EaGgoNm3ahKysLCxbtgxBQUGIiIjA/v378eOPPyI+Ph7t2rVDRkYGZDKZsN7U1FSsWrUKFRUVWLBgASIjI9G7d+8626+ursaLL74Ixhg0Gg3mz58PrVYLnucxa9YsjB8/HpMmTbLjHiFtBSUF0matXbvW5Fv3tGnThG/8Pj4+GDNmDDiOw6BBg7Bv3z6kpqaiR48euHr1KhYuXAgXFxd07NgR0dHROH78OCIiInD48GFMmzYNwcHBAICOHTuabHPixInw8PAQeuO8ffu22aQglUqxbds2HD58GJmZmZg1axaWL1+O5557zuzYCIQ0F0oKpM2aP39+vW0Kcrnc5LKOv78/1Go1CgoK4OnpCTc3N6FMqVTi5s2bAPRdYzfUIZmvr6/wu0wmg0ajMVtv/fr1uHDhAiorKyGVSnH06FFoNBqkpaWhXbt2WLVqlTVvlRCLUVIgxAy1Wg3GmJAYVCoVIiMj4efnh9LSUlRUVAiJQaVSCWMkKBQK3Lt3D2FhYQ+0/TfeeAM8z+Oll17Cp59+inPnzuGnn36q03UyIc2NnlMgxIyioiIcOHAAWq0WP/30E+7evYtHH30USqUS3bp1w5dffomqqipkZGTg6NGjeOyxxwDoB2DZtWsXsrOzwRhDRkYGSkpKmhTD3bt3ERgYCJFIhPT0dLt0UU4InSmQNuu9994zeU6hV69emD9/PgCgS5cuyM7ORlxcHHx9ffHWW28Jg9C8/vrr2Lx5M15++WV4enpiypQpwmWosWPHorq6GsuXL0dJSQnat2+Pv/71r02K79atW+jUqZPw+4QJEx7k7RJiERpPgZBaDLekLlu2zNGhEGJ3dPmIEEKIgJICIYQQAV0+IoQQIqAzBUIIIQJKCoQQQgSUFAghhAgoKRBCCBFQUiCEECL4//MjiaEK/eUeAAAAAElFTkSuQmCC\n"
},
"metadata": {}
}
],
"source": [
"N = epochs\n",
"plot.style.use(\"ggplot\")\n",
"plot.figure()\n",
"plot.plot(np.arange(0, N), H.history[\"loss\"], label=\"train_loss\")\n",
"plot.plot(np.arange(0, N), H.history[\"val_loss\"], label=\"val_loss\")\n",
"plot.plot(np.arange(0, N), H.history[\"accuracy\"], label=\"train_acc\")\n",
"plot.plot(np.arange(0, N), H.history[\"val_accuracy\"], label=\"val_acc\")\n",
"plot.title(\"Training Loss and Accuracy\")\n",
"plot.xlabel(\"Epoch #\")\n",
"plot.ylabel(\"Loss/Accuracy\")\n",
"plot.legend(loc=\"lower left\")\n",
"plot.savefig(\"plot.png\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
]
}
# import the necessary packages
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.models import load_model
from imutils.video import VideoStream
import numpy as np
import imutils
import time
import cv2
import os
import serial
import time
#Setting up your arduino
arduino = serial.Serial('/dev/ttyUSB0',9600)
lowConfidence = 0.75
#face detectinon function
def detectAndPredictMask(frame, faceNet, maskNet):
(h, w) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(frame, 1.0, (224, 224),
(104.0, 177.0, 123.0))
# pass the blob through the network and obtain the face detections
faceNet.setInput(blob)
detections = faceNet.forward()
# initialize our list of faces, their corresponding locations and the list of predictions from our face mask network
faces = []
locs = []
preds = []
# loop over the detections
for i in range(0, detections.shape[2]):
# extract the confidence (i.e., probability) associated with the detection
confidence = detections[0, 0, i, 2]
# filter out weak detections by ensuring the confidence is greater than the minimum confidence
if confidence > lowConfidence:
# compute the (x, y)-coordinates of the bounding box for the object
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# ensure the bounding boxes fall within the dimensions of the frame
(startX, startY) = (max(0, startX), max(0, startY))
(endX, endY) = (min(w - 1, endX), min(h - 1, endY))
# extract the face ROI, convert it from BGR to RGB channel ordering, and preprocess it
face = frame[startY:endY, startX:endX]
face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
face = cv2.resize(face, (224, 224))
face = img_to_array(face)
face = preprocess_input(face)
# add the face and bounding boxes to their respective lists
faces.append(face)
locs.append((startX, startY, endX, endY))
# only make a predictions if at least one face was detected
if len(faces) > 0:
faces = np.array(faces, dtype="float32")
preds = maskNet.predict(faces, batch_size=32)
# return a 2-tuple of the face locations and their corresponding
return (locs, preds)
# load our serialized face detector model from disk
prototxtPath = r"deploy.prototxt"
weightsPath = r"res10_300x300_ssd_iter_140000.caffemodel"
faceNet = cv2.dnn.readNet(prototxtPath, weightsPath)
# load the face mask detector model from disk
maskNet = load_model("mask_detector.model")
# initialize the video stream
vs = VideoStream(src=0).start()
# loop over the frames from the video stream
while True:
# grab the frame from the threaded video stream and resize it to have a maximum width of 900 pixels
frame = vs.read()
frame = imutils.resize(frame, width=900)
# detect faces in the frame and determine if they are wearing a face mask or not
(locs, preds) = detectAndPredictMask(frame, faceNet, maskNet)
# loop over the detected face locations and their corresponding locations
for (box, pred) in zip(locs, preds):
# unpack the bounding box and predictions
(startX, startY, endX, endY) = box
(mask, withoutMask) = pred
# determine the class label and color we'll use to draw the bounding box and text
label = "Mask" if mask > withoutMask else "No Mask"
color = (0, 255, 0) if label == "Mask" else (0, 0, 255)
if label =="Mask":
print("ACCESS GRANTED")
arduino.write(b'H')
else:
print("ACCESS DENIED")
arduino.write(b'L')
# include the probability in the label
label = "{}: {:.2f}%".format(label, max(mask, withoutMask) * 100)
# display the label and bounding box rectangle on the output frame
cv2.putText(frame, label, (startX, startY - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2)
cv2.rectangle(frame, (startX, startY), (endX, endY), color, 2)
# show the output frame
cv2.imshow("FaceMask Detection by KAREM -- q to quit", frame)
key = cv2.waitKey(1) & 0xFF
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
# do a bit of cleanup
cv2.destroyAllWindows()
vs.stop()
input: "data"
input_shape {
dim: 1
dim: 3
dim: 300
dim: 300
}
layer {
name: "data_bn"
type: "BatchNorm"
bottom: "data"
top: "data_bn"
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
}
layer {
name: "data_scale"
type: "Scale"
bottom: "data_bn"
top: "data_bn"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 1.0
}
scale_param {
bias_term: true
}
}
layer {
name: "conv1_h"
type: "Convolution"
bottom: "data_bn"
top: "conv1_h"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 1.0
}
convolution_param {
num_output: 32
pad: 3
kernel_size: 7
stride: 2
weight_filler {
type: "msra"
variance_norm: FAN_OUT
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv1_bn_h"
type: "BatchNorm"
bottom: "conv1_h"
top: "conv1_h"
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
}
layer {
name: "conv1_scale_h"
type: "Scale"
bottom: "conv1_h"
top: "conv1_h"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 1.0
}
scale_param {
bias_term: true
}
}
layer {
name: "conv1_relu"
type: "ReLU"
bottom: "conv1_h"
top: "conv1_h"
}
layer {
name: "conv1_pool"
type: "Pooling"
bottom: "conv1_h"
top: "conv1_pool"
pooling_param {
kernel_size: 3
stride: 2
}
}
layer {
name: "layer_64_1_conv1_h"
type: "Convolution"
bottom: "conv1_pool"
top: "layer_64_1_conv1_h"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 32
bias_term: false
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "layer_64_1_bn2_h"
type: "BatchNorm"
bottom: "layer_64_1_conv1_h"
top: "layer_64_1_conv1_h"
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
}
layer {
name: "layer_64_1_scale2_h"
type: "Scale"
bottom: "layer_64_1_conv1_h"
top: "layer_64_1_conv1_h"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 1.0
}
scale_param {
bias_term: true
}
}
layer {
name: "layer_64_1_relu2"
type: "ReLU"
bottom: "layer_64_1_conv1_h"
top: "layer_64_1_conv1_h"
}
layer {
name: "layer_64_1_conv2_h"
type: "Convolution"
bottom: "layer_64_1_conv1_h"
top: "layer_64_1_conv2_h"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 32
bias_term: false
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "layer_64_1_sum"
type: "Eltwise"
bottom: "layer_64_1_conv2_h"
bottom: "conv1_pool"
top: "layer_64_1_sum"
}
layer {
name: "layer_128_1_bn1_h"
type: "BatchNorm"
bottom: "layer_64_1_sum"
top: "layer_128_1_bn1_h"
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
}
layer {
name: "layer_128_1_scale1_h"
type: "Scale"
bottom: "layer_128_1_bn1_h"
top: "layer_128_1_bn1_h"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 1.0
}
scale_param {
bias_term: true
}
}
layer {
name: "layer_128_1_relu1"
type: "ReLU"
bottom: "layer_128_1_bn1_h"
top: "layer_128_1_bn1_h"
}
layer {
name: "layer_128_1_conv1_h"
type: "Convolution"
bottom: "layer_128_1_bn1_h"
top: "layer_128_1_conv1_h"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "layer_128_1_bn2"
type: "BatchNorm"
bottom: "layer_128_1_conv1_h"
top: "layer_128_1_conv1_h"
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
}
layer {
name: "layer_128_1_scale2"
type: "Scale"
bottom: "layer_128_1_conv1_h"
top: "layer_128_1_conv1_h"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 1.0
}
scale_param {
bias_term: true
}
}
layer {
name: "layer_128_1_relu2"
type: "ReLU"
bottom: "layer_128_1_conv1_h"
top: "layer_128_1_conv1_h"
}
layer {
name: "layer_128_1_conv2"
type: "Convolution"
bottom: "layer_128_1_conv1_h"
top: "layer_128_1_conv2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "layer_128_1_conv_expand_h"
type: "Convolution"
bottom: "layer_128_1_bn1_h"
top: "layer_128_1_conv_expand_h"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 128
bias_term: false
pad: 0
kernel_size: 1
stride: 2
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "layer_128_1_sum"
type: "Eltwise"
bottom: "layer_128_1_conv2"
bottom: "layer_128_1_conv_expand_h"
top: "layer_128_1_sum"
}
layer {
name: "layer_256_1_bn1"
type: "BatchNorm"
bottom: "layer_128_1_sum"
top: "layer_256_1_bn1"
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
}
layer {
name: "layer_256_1_scale1"
type: "Scale"
bottom: "layer_256_1_bn1"
top: "layer_256_1_bn1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 1.0
}
scale_param {
bias_term: true
}
}
layer {
name: "layer_256_1_relu1"
type: "ReLU"
bottom: "layer_256_1_bn1"
top: "layer_256_1_bn1"
}
layer {
name: "layer_256_1_conv1"
type: "Convolution"
bottom: "layer_256_1_bn1"
top: "layer_256_1_conv1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "layer_256_1_bn2"
type: "BatchNorm"
bottom: "layer_256_1_conv1"
top: "layer_256_1_conv1"
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
}
layer {
name: "layer_256_1_scale2"
type: "Scale"
bottom: "layer_256_1_conv1"
top: "layer_256_1_conv1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 1.0
}
scale_param {
bias_term: true
}
}
layer {
name: "layer_256_1_relu2"
type: "ReLU"
bottom: "layer_256_1_conv1"
top: "layer_256_1_conv1"
}
layer {
name: "layer_256_1_conv2"
type: "Convolution"
bottom: "layer_256_1_conv1"
top: "layer_256_1_conv2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "layer_256_1_conv_expand"
type: "Convolution"
bottom: "layer_256_1_bn1"
top: "layer_256_1_conv_expand"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 256
bias_term: false
pad: 0
kernel_size: 1
stride: 2
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "layer_256_1_sum"
type: "Eltwise"
bottom: "layer_256_1_conv2"
bottom: "layer_256_1_conv_expand"
top: "layer_256_1_sum"
}
layer {
name: "layer_512_1_bn1"
type: "BatchNorm"
bottom: "layer_256_1_sum"
top: "layer_512_1_bn1"
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
}
layer {
name: "layer_512_1_scale1"
type: "Scale"
bottom: "layer_512_1_bn1"
top: "layer_512_1_bn1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 1.0
}
scale_param {
bias_term: true
}
}
layer {
name: "layer_512_1_relu1"
type: "ReLU"
bottom: "layer_512_1_bn1"
top: "layer_512_1_bn1"
}
layer {
name: "layer_512_1_conv1_h"
type: "Convolution"
bottom: "layer_512_1_bn1"
top: "layer_512_1_conv1_h"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
stride: 1 # 2
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "layer_512_1_bn2_h"
type: "BatchNorm"
bottom: "layer_512_1_conv1_h"
top: "layer_512_1_conv1_h"
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
}
layer {
name: "layer_512_1_scale2_h"
type: "Scale"
bottom: "layer_512_1_conv1_h"
top: "layer_512_1_conv1_h"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 1.0
}
scale_param {
bias_term: true
}
}
layer {
name: "layer_512_1_relu2"
type: "ReLU"
bottom: "layer_512_1_conv1_h"
top: "layer_512_1_conv1_h"
}
layer {
name: "layer_512_1_conv2_h"
type: "Convolution"
bottom: "layer_512_1_conv1_h"
top: "layer_512_1_conv2_h"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 256
bias_term: false
pad: 2 # 1
kernel_size: 3
stride: 1
dilation: 2
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "layer_512_1_conv_expand_h"
type: "Convolution"
bottom: "layer_512_1_bn1"
top: "layer_512_1_conv_expand_h"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 256
bias_term: false
pad: 0
kernel_size: 1
stride: 1 # 2
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "layer_512_1_sum"
type: "Eltwise"
bottom: "layer_512_1_conv2_h"
bottom: "layer_512_1_conv_expand_h"
top: "layer_512_1_sum"
}
layer {
name: "last_bn_h"
type: "BatchNorm"
bottom: "layer_512_1_sum"
top: "layer_512_1_sum"
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
}
layer {
name: "last_scale_h"
type: "Scale"
bottom: "layer_512_1_sum"
top: "layer_512_1_sum"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 1.0
}
scale_param {
bias_term: true
}
}
layer {
name: "last_relu"
type: "ReLU"
bottom: "layer_512_1_sum"
top: "fc7"
}
layer {
name: "conv6_1_h"
type: "Convolution"
bottom: "fc7"
top: "conv6_1_h"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv6_1_relu"
type: "ReLU"
bottom: "conv6_1_h"
top: "conv6_1_h"
}
layer {
name: "conv6_2_h"
type: "Convolution"
bottom: "conv6_1_h"
top: "conv6_2_h"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv6_2_relu"
type: "ReLU"
bottom: "conv6_2_h"
top: "conv6_2_h"
}
layer {
name: "conv7_1_h"
type: "Convolution"
bottom: "conv6_2_h"
top: "conv7_1_h"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv7_1_relu"
type: "ReLU"
bottom: "conv7_1_h"
top: "conv7_1_h"
}
layer {
name: "conv7_2_h"
type: "Convolution"
bottom: "conv7_1_h"
top: "conv7_2_h"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv7_2_relu"
type: "ReLU"
bottom: "conv7_2_h"
top: "conv7_2_h"
}
layer {
name: "conv8_1_h"
type: "Convolution"
bottom: "conv7_2_h"
top: "conv8_1_h"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv8_1_relu"
type: "ReLU"
bottom: "conv8_1_h"
top: "conv8_1_h"
}
layer {
name: "conv8_2_h"
type: "Convolution"
bottom: "conv8_1_h"
top: "conv8_2_h"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv8_2_relu"
type: "ReLU"
bottom: "conv8_2_h"
top: "conv8_2_h"
}
layer {
name: "conv9_1_h"
type: "Convolution"
bottom: "conv8_2_h"
top: "conv9_1_h"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv9_1_relu"
type: "ReLU"
bottom: "conv9_1_h"
top: "conv9_1_h"
}
layer {
name: "conv9_2_h"
type: "Convolution"
bottom: "conv9_1_h"
top: "conv9_2_h"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv9_2_relu"
type: "ReLU"
bottom: "conv9_2_h"
top: "conv9_2_h"
}
layer {
name: "conv4_3_norm"
type: "Normalize"
bottom: "layer_256_1_bn1"
top: "conv4_3_norm"
norm_param {
across_spatial: false
scale_filler {
type: "constant"
value: 20
}
channel_shared: false
}
}
layer {
name: "conv4_3_norm_mbox_loc"
type: "Convolution"
bottom: "conv4_3_norm"
top: "conv4_3_norm_mbox_loc"
param {
lr_mult: 1
decay_mult: 1
...
This file has been truncated, please download it to see its full contents.
int inByte = 0; // initialize the variable inByte
const int ledPin = 13; // pin that the LED is attached to
void setup(){
pinMode(ledPin, OUTPUT); // initialize the LED pin as an output
Serial.begin(57600); // set serial monitor to same speed
}
void loop(){
if (Serial.available()>0) { // check if any data received
inByte = Serial.read(); // yes, so read it from incoming buffer
if (inByte == 1){
digitalWrite(ledPin, HIGH);
}
else {
digitalWrite(ledPin,LOW);
}
}
}
Comments