Kutluhan Aktar
Published © CC BY

IoT | TensorFlow Weather Station Predicts Rainfall Intensity

Collates local weather data on Google Sheets and interprets it with a neural network model built w/ TensorFlow to predict rainfall intensity

ExpertFull instructions provided5 hours21,771

Things used in this project

Hardware components

DFRobot Weather Station Kit with Anemometer/Wind Vane/Rain Bucket
×1
NodeMCU ESP8266 Breakout Board
NodeMCU ESP8266 Breakout Board
ESP-12E
×1
DFRobot SIM808 GPS/GPRS/GSM Shield For Arduino
×1
Arduino UNO
Arduino UNO
×1
Raspberry Pi 3 Model B+
Raspberry Pi 3 Model B+
Raspberry Pi 3B+ or 4
×1
Raspberry Pi 4 Model B
Raspberry Pi 4 Model B
Raspberry Pi 3B+ or 4
×1
SparkFun Solder-able Breadboard - Mini
SparkFun Solder-able Breadboard - Mini
×2

Software apps and online services

Arduino IDE
Arduino IDE
TensorFlow
TensorFlow
Visual Studio 2017
Microsoft Visual Studio 2017

Hand tools and fabrication machines

Hot glue gun (generic)
Hot glue gun (generic)

Story

Read more

Custom parts and enclosures

Remote Weather Station.csv

Schematics

Schematic-1

Schematic-2

Code

IoT_weather_station_neural_network.py

Python
# IoT Weather Station Predicting Rainfall Intensity w/ TensorFlow

# Windows, Linux, or Ubuntu

# By Kutluhan Aktar

# Collates weather data on Google Sheets and interprets it with a neural network built in TensorFlow to make predictions on the rainfall intensity. 

# For more information:
# https://www.theamplituhedron.com/projects/IoT_Weather_Station_Predicting_Rainfall_Intensity_with_TensorFlow

import tensorflow as tf
from tensorflow import keras
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

# Create a class to build a neural network after getting, visualizing, and scaling (normalizing) weather data.
class Weather_Station:
    def __init__(self, data):
        self.df = data
        self.input = []
        self.label = []
        # Define class names for different rainfall intensity predictions and values.
        self.class_names = ['None', 'Light Rain', 'Moderate Rain', 'Heavy Rain', 'Violent Rain']
    # Create graphics for requested columns.
    def graphics(self, column_1, column_2, xlabel, ylabel):
        # Show requested columns from the data set:
        plt.style.use("dark_background")
        plt.gcf().canvas.set_window_title('IoT Weather Station')
        plt.hist2d(self.df[column_1], self.df[column_2])
        plt.colorbar()
        plt.xlabel(xlabel)
        plt.ylabel(ylabel)
        plt.title(xlabel)
        plt.show()
    # Visualize data before creating and feeding the neural network model.
    def data_visualization(self):
        # Inspect requested columns to build a model with appropriately formatted data:
        self.graphics('WD', '1h_RF', 'Wind Direction (deg)', 'One-Hour Rainfall (mm)')
        self.graphics('Av_WS', '1h_RF', 'Average Wind Speed (m/s)', 'One-Hour Rainfall (mm)')
        self.graphics('Mx_WS', '1h_RF', 'Maximum Wind Speed (m/s)', 'One-Hour Rainfall (mm)')
        self.graphics('24h_RF', '1h_RF', '24-Hour Rainfall (mm)', 'One-Hour Rainfall (mm)')
        self.graphics('Tem', '1h_RF', 'Temperature (C)', 'One-Hour Rainfall (mm)')
        self.graphics('Hum', '1h_RF', 'Humidity (%)', 'One-Hour Rainfall (mm)')
        self.graphics('b_PR', '1h_RF', 'Barometric Pressure (hPA)', 'One-Hour Rainfall (mm)')    
    # Scale (normalize) data depending on the neural network model.
    def scale_data(self):
        # Wind Direction and Speed:
        wv = self.df.pop('Av_WS')
        max_wv = self.df.pop('Mx_WS')
        # Convert to radians.
        wd_rad = self.df.pop('WD')*np.pi / 180
        # Calculate the wind x and y components.
        self.df['scaled_WX'] = wv*np.cos(wd_rad)
        self.df['scaled_WY'] = wv*np.sin(wd_rad)
        # Calculate the max wind x and y components.
        self.df['scaled_max_WX'] = max_wv*np.cos(wd_rad)
        self.df['scaled_max_WY'] = max_wv*np.sin(wd_rad)
        # Temperature:
        tem = self.df.pop('Tem')
        self.df['scaled_Tem'] = tem / 25
        # Humidity:
        hum = self.df.pop('Hum')
        self.df['scaled_Hum'] = hum / 70 
        # Barometric Pressure:
        bPR = self.df.pop('b_PR')
        self.df["scaled_bPR"] = bPR / 1013     
        # 24 Hour Rainfall (Approx.)
        rain_24 = self.df.pop('24h_RF')
        self.df['scaled_24h_RF'] = rain_24 / 24
    # Define the input and label arrays.
    def create_input_and_label(self):
        n = len(self.df)
        # Create the input array using the scaled variables:
        for i in range(n):
            self.input.append(np.array([self.df['scaled_WX'][i], self.df['scaled_WY'][i], self.df['scaled_max_WX'][i], self.df['scaled_max_WY'][i], self.df['scaled_Tem'][i], self.df['scaled_Hum'][i], self.df['scaled_bPR'][i]]))
        self.input = np.asarray(self.input)
        # Create the label array using the one-hour and 24-hour rainfall variables:
        for i in range(n):
            _class = 0
            # Evaluate the approximate rainfall rate:
            approx_RF_rate = (self.df['1h_RF'][i] + self.df['scaled_24h_RF'][i]) * 100
            # As labels, assign classes of rainfall intensity according to the approximate rainfall rate (mm):
            if approx_RF_rate == 0:
                _class = 0
            elif approx_RF_rate < 2.5:
                _class = 1
            elif 2.5 < approx_RF_rate and approx_RF_rate < 7.6:
                _class = 2
            elif 7.6 < approx_RF_rate and approx_RF_rate < 50:
                _class = 3
            else:
                _class = 4
            self.label.append(_class)
        self.label = np.asarray(self.label)
    # Split the data for the training and test sets.
    def split_data(self):
        n = len(self.df)
        # (60%, 40%) - (training, test)
        self.train_input = self.input[0:int(n*0.6)]
        self.test_input = self.input[int(n*0.6):]
        self.train_label = self.label[0:int(n*0.6)]
        self.test_label = self.label[int(n*0.6):]
    # Build and train the artificial neural network (ANN) to make predictions on the rainfall intensity with classes.
    def build_and_train_model(self):
        # Build the neural network:
        self.model = keras.Sequential([
            keras.Input(shape=(7,)),
            keras.layers.Dense(16, activation='relu'),
            keras.layers.Dense(32, activation='relu'),
            keras.layers.Dense(64, activation='relu'),
            keras.layers.Dense(128, activation='relu'),
            keras.layers.Dense(5, activation='softmax')
        ])
        # Compile:
        self.model.compile(optimizer='adam', loss="sparse_categorical_crossentropy", metrics=['accuracy'])
        # Train:
        self.model.fit(self.train_input, self.train_label, epochs=19)
        # Test the accuracy:
        print("\n\nModel Evaluation:")
        test_loss, test_acc = self.model.evaluate(self.test_input, self.test_label) 
        print("Evaluated Accuracy: ", test_acc)
    # Make rainfall intensity class [0 - 4] predictions using different input arrays.
    def make_prediction(self, pre_array):
        print("\n\nModel Predictions:\n")
        prediction = self.model.predict(pre_array)
        for i in range(len(pre_array)):
            print("Prediction => ", self.class_names[np.argmax(prediction[i])])
    # Save the model for further usage without training steps:
    def save_model(self):
        self.model.save("E:\PYTHON\weather_station.h5")
    # Run Artificial Neural Network (ANN):
    def Neural_Network(self, save):
        self.scale_data()
        self.create_input_and_label()
        self.split_data()
        self.build_and_train_model()
        if save == True:
            self.save_model()
        # Example Input and Layer:
        print("\nScaled Input [EXP]:\n")
        print(self.train_input[0])
        print("\nScaled Label [EXP]:\n")
        print(self.train_label[0])
        
    
# Read data (Remote Weather Station.csv):
csv_path = "E:\PYTHON\Remote Weather Station.csv"
df = pd.read_csv(csv_path)

# Define a new class object named 'station':
station = Weather_Station(df)

# Visualize data:
#station.data_visualization()

# Artificial Neural Network (ANN):
station.Neural_Network(False)

# Enter inputs for making predictions:
prediction_array = np.array([
    [0, 0, 0.31819805, 0.31819805, 0.6988, 0.81498571, 0.99349753],
    [0, -0, 0, -0, 0.8444, 1, 0.96835143],
    [0, 0, 0.45, 0, 0.87577, 0.95857143, 1.00128332],
    [-0, -0, -0, -0, 0.8224, 1.05714286, 0.99279368]
])
# Prediction Results:
station.make_prediction(prediction_array)

ESP12E_remote_weather_station.ino

Arduino
         /////////////////////////////////////////////  
        //    IoT Weather Station Predicting       //
       //    Rainfall Intensity w/ TensorFlow     //
      //         ------------------------        //
     //           NodeMCU (ESP-12E)             //           
    //           by Kutluhan Aktar             // 
   //                                         //
  /////////////////////////////////////////////

//
// Collates weather data on Google Sheets and interprets it with a neural network built in TensorFlow to make predictions on the rainfall intensity. 
//
// For more information:
// https://www.theamplituhedron.com/projects/IoT_Weather_Station_Predicting_Rainfall_Intensity_with_TensorFlow
//
// Connections
// NodeMCU (ESP-12E) :           
//                                Weather Station
// VV  --------------------------- 5V
// D5  --------------------------- RX
// D6  --------------------------- TX
// G   --------------------------- GND


// Include required libraries:
#include <ESP8266WiFi.h>
#include <WiFiClient.h> 
#include <ESP8266WebServer.h>
#include <ESP8266HTTPClient.h>
#include <SoftwareSerial.h>

// Define your WiFi settings.
const char *ssid = "<SSID>";
const char *password = "<PASSWORD>";

// Define weather station settings:
char databuffer[35];
double temp;
int transferring = 0;

// Define the serial connection pins - RX and TX.
SoftwareSerial Serial_1(D6, D5); // (Rx, Tx)

void setup() {
  // Wait until connected.
  delay(1000);
  // Initiate serial ports:
  Serial.begin(115200);
  Serial_1.begin(9600);
  // It is just for assuring if connection is alive.
  WiFi.mode(WIFI_OFF);
  delay(1000);
  // This mode allows NodeMCU to connect any WiFi directly.
  WiFi.mode(WIFI_STA);        
  // Connect NodeMCU to your WiFi.
  WiFi.begin(ssid, password);
  
  Serial.print("\n\n");
  Serial.print("Try to connect to WiFi. Please wait! ");
  Serial.print("\n\n");
  // Halt the code until connected to WiFi.
  while (WiFi.status() != WL_CONNECTED) {
    delay(500);
    Serial.print("*");
  }

  // If connection is successful:
  Serial.print("\n\n");
  Serial.print("-------------------------------------");
  Serial.print("\n\n");
  Serial.print("Connection is successful!");
  Serial.print("\n\n");
  Serial.print("Connected WiFi SSID : ");
  Serial.print(ssid);
  Serial.print("\n\n");
  Serial.println("Connected IPAddress : ");
  Serial.println(WiFi.localIP());
  Serial.print("\n\n");

}

void loop() {
  // Get data from the remote weather station:
  getBuffer(); 
  // Debug the information and create the link:
  String weather_data = "wd=" + String(WindDirection()) + "&a_ws=" + String(WindSpeedAverage()) + "&m_ws=" + String(WindSpeedMax()) + "&1_rf=" + String(RainfallOneHour()) + "&24_rf=" + String(RainfallOneDay()) + "&tem=" + String(Temperature()) + "&hum=" + String(Humidity()) + "&b_pr=" + String(BarPressure());
  String server = "http://192.168.1.24/remote_weather_station/?";
  Serial.println("Weather Data => " + weather_data);
  Serial.println("Buffer => " + String(databuffer));
  // Send data packets every 5 minutes to Raspberry Pi (or any server).
  transferring++; Serial.println("Time => " + String(transferring) + "s / " + String(int(5*60)) + "s\n\n");
  if(transferring == 5*60){
   // Create the HTTP object to make a request to the server. 
   HTTPClient http; 
   http.begin(server + weather_data);
   int httpCode = http.GET();           
   String payload = http.getString();    
   Serial.println("Data Send...\nHTTP Code => " + String(httpCode) + "\nServer Response => " + payload + "\n\n"); 
   http.end();
   transferring = 0;  
  }
  // Wait 1 second...
  delay(1000);
}

// WEATHER STATION
void getBuffer(){
  int index;
  for (index = 0;index < 35;index ++){
    if(Serial_1.available()){
      databuffer[index] = Serial_1.read();
      if (databuffer[0] != 'c'){
        index = -1;
      }
    }
    else{
      index --;
    }
  }
}

int transCharToInt(char *_buffer, int _start, int _stop){
  int _index;
  int result = 0;
  int num = _stop - _start + 1;
  int _temp[num];
  for (_index = _start;_index <= _stop;_index ++){
    _temp[_index - _start] = _buffer[_index] - '0';
    result = 10*result + _temp[_index - _start];
  }
  return result;
}

int WindDirection(){ return transCharToInt(databuffer,1,3); } // Wind Direction (deg)

float WindSpeedAverage(){ temp = 0.44704 * transCharToInt(databuffer,5,7); return temp; } // Average Air Speed (1 minute)

float WindSpeedMax(){ temp = 0.44704 * transCharToInt(databuffer,9,11); return temp; } //Max Air Speed (5 minutes)

float Temperature(){ temp = (transCharToInt(databuffer,13,15) - 32.00) * 5.00 / 9.00; return temp; } // Temperature ("C")

float RainfallOneHour(){ temp = transCharToInt(databuffer,17,19) * 25.40 * 0.01; return temp; } // Rainfall (1 hour)

float RainfallOneDay(){ temp = transCharToInt(databuffer,21,23) * 25.40 * 0.01; return temp; } // Rainfall (24 hours)

int Humidity(){ return transCharToInt(databuffer,25,26); } // Humidity (%)

float BarPressure(){ temp = transCharToInt(databuffer,28,32); return temp / 10.00; } // Barometric Pressure (hPA)

SIM808_remote_weather_station.ino

Arduino
         /////////////////////////////////////////////  
        //    IoT Weather Station Predicting       //
       //    Rainfall Intensity w/ TensorFlow     //
      //         ------------------------        //
     //           Arduino Uno (SIM808)          //           
    //             by Kutluhan Aktar           // 
   //                                         //
  /////////////////////////////////////////////

//
// Collates weather data on Google Sheets and interprets it with a neural network built in TensorFlow to make predictions on the rainfall intensity. 
//
// For more information:
// https://www.theamplituhedron.com/projects/IoT_Weather_Station_Predicting_Rainfall_Intensity_with_TensorFlow
//
// Connections
// Arduino Uno:           
//                                SIM808 GPS/GPRS/GSM Shield For Arduino
// D0  --------------------------- RX
// D1  --------------------------- TX
// D12 --------------------------- POWER          
//                                Weather Station
// 5V  --------------------------- 5V
// D5  --------------------------- RX
// D6  --------------------------- TX
// GND --------------------------- GND


// Include required libraries:
#include <DFRobot_sim808.h>
#include <SoftwareSerial.h>

// Define the sim808.
DFRobot_SIM808 sim808(&Serial);

// Define weather station settings:
char databuffer[35];
double temp;
int transferring = 0;

// Define the serial connection pins - RX and TX.
SoftwareSerial Serial_1(6, 5); // (Rx, Tx)

void setup() {
  // Wait until connected.
  delay(1000);
  // Initiate serial ports:
  Serial.begin(9600);
  Serial_1.begin(9600);

  //******** Initialize sim808 module *************
  while(!sim808.init()) {
     delay(1000);
     Serial.print("Sim808 init error\r\n");
  }
  delay(2000);
  // Continue if the SIM808 Module is working accurately.
  Serial.println("Sim808 init success");
  delay(5000);
}

void loop() {
  // Get data from the remote weather station:
  getBuffer(); 
  // Debug the information and create the link:
  String weather_data_1 = "wd=" + String(WindDirection()) + "&a_ws=" + String(WindSpeedAverage()) + "&m_ws=" + String(WindSpeedMax());
  String weather_data_2 = "&1_rf=" + String(RainfallOneHour()) + "&24_rf=" + String(RainfallOneDay()) + "&tem=" + String(Temperature());
  String weather_data_3 = "&hum=" + String(Humidity()) + "&b_pr=" + String(BarPressure());
  Serial.print("Weather Data => " + weather_data_1);
  Serial.print(weather_data_2);
  Serial.println(weather_data_3);
  Serial.println("Buffer => " + String(databuffer));
  // Send data packets every 5 minutes to the server.
  transferring++; Serial.println("Time => " + String(transferring) + "s / " + String(int(5*60)) + "s\n\n");
  if(transferring == 5*60){
    //*********** Attempt DHCP *******************
    while(!sim808.join(F("cmnet"))) {
      Serial.println("Sim808 join network error!");
      delay(2000);
    }
    //************ Successful DHCP ****************
    delay(5000);
    Serial.println("Successful DHCP");
    //*********** Establish a TCP connection ************
    if(!sim808.connect(TCP,"192.168.1.24", 80)) { // Change it with your server.
      Serial.println("Connection Error");
    }else{
      Serial.println("Connection OK");
    }
    delay(2000);
    //*********** Send a GET request *****************
    String line = "GET /remote_weather_station/?" + weather_data_1 + weather_data_2 + weather_data_3 + " HTTP/1.0\r\n\r\n";
    Serial.println(line);
    char buffer[512];
    // Convert the line from string to char array to make an HTTP Get Request with the SIM808.
    char web_hook[110];
    String_to_Char(line, 110, web_hook);
    sim808.send(web_hook, sizeof(web_hook)-1);
    while (true) {
      int ret = sim808.recv(buffer, sizeof(buffer)-1);
      if (ret <= 0){
          Serial.println("Fetch Over...");
          break; 
      }
      // Uncomment to view the response in the serial monitor.
      /*
      buffer[ret] = '\0';
      Serial.print("Recv: ");
      Serial.print(ret);
      Serial.print(" bytes: ");
      Serial.println(buffer);
      */
      Serial.println("\nData Send");
      break;
    }
    //************* Close TCP or UDP connections **********
    sim808.close();
    //*** Disconnect wireless connection, Close Moving Scene *******
    sim808.disconnect();
    // Exit.
    transferring = 0;  
  }
  // Wait 1 second...
  delay(1000);
}

// WEATHER STATION
void getBuffer(){
  int index;
  for (index = 0;index < 35;index ++){
    if(Serial_1.available()){
      databuffer[index] = Serial_1.read();
      if (databuffer[0] != 'c'){
        index = -1;
      }
    }
    else{
      index --;
    }
  }
}

int transCharToInt(char *_buffer, int _start, int _stop){
  int _index;
  int result = 0;
  int num = _stop - _start + 1;
  int _temp[num];
  for (_index = _start;_index <= _stop;_index ++){
    _temp[_index - _start] = _buffer[_index] - '0';
    result = 10*result + _temp[_index - _start];
  }
  return result;
}

int WindDirection(){ return transCharToInt(databuffer,1,3); } // Wind Direction (deg)

float WindSpeedAverage(){ temp = 0.44704 * transCharToInt(databuffer,5,7); return temp; } // Average Air Speed (1 minute)

float WindSpeedMax(){ temp = 0.44704 * transCharToInt(databuffer,9,11); return temp; } //Max Air Speed (5 minutes)

float Temperature(){ temp = (transCharToInt(databuffer,13,15) - 32.00) * 5.00 / 9.00; return temp; } // Temperature ("C")

float RainfallOneHour(){ temp = transCharToInt(databuffer,17,19) * 25.40 * 0.01; return temp; } // Rainfall (1 hour)

float RainfallOneDay(){ temp = transCharToInt(databuffer,21,23) * 25.40 * 0.01; return temp; } // Rainfall (24 hours)

int Humidity(){ return transCharToInt(databuffer,25,26); } // Humidity (%)

float BarPressure(){ temp = transCharToInt(databuffer,28,32); return temp / 10.00; } // Barometric Pressure (hPA)

void String_to_Char(String _String, int _size, char _convert[]){
  for(int i=0;i<_size;i++){
    _convert[i] = _String[i];
  }
}

index.php (web application)

PHP
<?php
require_once $_SERVER['DOCUMENT_ROOT']."google-api-php-client-2.4.1/vendor/autoload.php"; // Google Client API v2.0
require_once "account_verification_token.php"; // Get the verification code.

// Get the variables from the weather station:
// Wind Direction (wd), Average Wind Speed (a_ws), Max Wind Speed (m_ws), 1hr Rainfall (1_rf), 24hr Rainfall (24_rf), Temperature (tem), Humidity (hum), Barometric Pressure (b_pr).
$variables_from_module;
if(isset($_GET['wd']) && isset($_GET['a_ws']) && isset($_GET['m_ws']) && isset($_GET['1_rf']) && isset($_GET['24_rf']) && isset($_GET['tem']) && isset($_GET['hum']) && isset($_GET['b_pr'])){
	$variables_from_module = [
	  "wd" => (int)$_GET['wd'],
	  "a_ws" => (float)$_GET['a_ws'],
	  "m_ws" => (float)$_GET['m_ws'],
	  "1_rf" => (float)$_GET['1_rf'],
	  "24_rf" => (float)$_GET['24_rf'],
	  "tem" => (float)$_GET['tem'],
	  "hum" => (int)$_GET['hum'],
	  "b_pr" => (float)$_GET['b_pr']
    ];
}else{
    $variables_from_module = [
	  "wd" => "err",
	  "a_ws" => "err",
	  "m_ws" => "err",
	  "1_rf" => "err",
	  "24_rf" => "err",
	  "tem" => "err",
	  "hum" => "err",
	  "b_pr" => "err"
    ];
}


/**
 * Returns an authorized API client.
 * @return Google_Client the authorized client object
 */
function getClient()
{
    $client = new Google_Client();
    $client->setApplicationName('Remote Weather Station'); // Enter your application name.
    $client->setScopes('https://www.googleapis.com/auth/spreadsheets');
    $client->setAuthConfig('credentials.json');
    $client->setAccessType('offline');
    $client->setPrompt('select_account consent');

    // Load previously authorized token from a file, if it exists.
    // The file token.json stores the user's access and refresh tokens, and is
    // created automatically when the authorization flow completes for the first
    // time.
    $tokenPath = 'token.json';
    if (file_exists($tokenPath)) {
        $accessToken = json_decode(file_get_contents($tokenPath), true);
        $client->setAccessToken($accessToken);
		print("Token Found!");
    }

    // If there is no previous token or it's expired.
    if ($client->isAccessTokenExpired()) {
        // Refresh the token if possible, else fetch a new one.
        if ($client->getRefreshToken()) {
            $client->fetchAccessTokenWithRefreshToken($client->getRefreshToken());
        } else {
            // Request authorization from the user.
            $authUrl = $client->createAuthUrl();
			// Do not forget to refresh the page after getting the verification code and entering it to the account_verification_token.php.
            printf("Open the following link in your browser:<br><br>%s<br><br>", $authUrl); // <= Comment
            print 'Do not forget to refresh the page after getting the verification code and entering it to the account_verification_token.php.<br><br>Set the verification code in the account_verification_token.php file.'; // <= Comment
            // Set the verification code to create the token.json.
			$authCode = trim($GLOBALS['account_verification_token']);

            // Exchange authorization code for an access token.
            $accessToken = $client->fetchAccessTokenWithAuthCode($authCode);
            $client->setAccessToken($accessToken);

            // Check to see if there was an error and the account_verification_token is entered.
            if (array_key_exists('error', $accessToken)) {
                throw new Exception(join(', ', $accessToken));
            }else{
				print("Successful! Refresh the page.");
			}
        }
        // Save the token to a file.
        if (!file_exists(dirname($tokenPath))) {
            mkdir(dirname($tokenPath), 0700, true);
        }
        file_put_contents($tokenPath, json_encode($client->getAccessToken()));
    }
    return $client;
}


// Get the API client and construct the service object.
$client = getClient();
$service = new Google_Service_Sheets($client);

// Enter your spreadsheetId:
$spreadsheetId = '<spreadsheet_ID>';
// Enter the range (the first row) under which new values will be appended (8 rows):
$range = 'A1:H1';
// Append recent findings from the weather station to the spreadsheet.
$values = [
    [$variables_from_module["wd"], $variables_from_module["a_ws"], $variables_from_module["m_ws"], $variables_from_module["1_rf"], $variables_from_module["24_rf"], $variables_from_module["tem"], $variables_from_module["hum"], $variables_from_module["b_pr"]]
];
$body = new Google_Service_Sheets_ValueRange([
    'values' => $values
]);
$params = [
    'valueInputOption' => "RAW"
];
// Append if only requested!
if(isset($_GET['wd']) && isset($_GET['a_ws']) && isset($_GET['m_ws']) && isset($_GET['1_rf']) && isset($_GET['24_rf']) && isset($_GET['tem']) && isset($_GET['hum']) && isset($_GET['b_pr'])){
    $result = $service->spreadsheets_values->append($spreadsheetId, $range, $body, $params);
    printf("<br><br>%d cells appended.", $result->getUpdates()->getUpdatedCells());
}else{
	print ("<br>Missing Data!");
}

account_verification_token.php (web application)

PHP
<?php $account_verification_token = "<Enter Token>"; // Enter the verification code after authorization. ?>

Credits

Kutluhan Aktar

Kutluhan Aktar

81 projects • 307 followers
AI & Full-Stack Developer | @EdgeImpulse | @Particle | Maker | Independent Researcher

Comments