Hardware components | ||||||
| × | 1 | ||||
![]() |
| × | 1 | |||
![]() |
| × | 1 | |||
Software apps and online services | ||||||
| ||||||
| ||||||
![]() |
| |||||
| ||||||
Hand tools and fabrication machines | ||||||
![]() |
| |||||
![]() |
|
Sending data via tcp to a local server on a virtual com port and connecting to Impulse Edge
Real testing
Read more- Connect the Adxl345 accelerometer to Stm32 board, my board uses Stm32L471RGT and ADXL345 (other Arduino BLE, Nucleo can be used...).
STM32L471RGT in my board
Adxl345 my board
- Connect Esp 01 (or other Wi-Fi module). Esp connects via usart, we will use AT commands.
Esp 01
void esp8266()
{
ei_printf("AT\r\n");
HAL_Delay(5000);
ei_printf("AT+CWMODE=1\r\n");
HAL_Delay(5000);
ei_printf("AT+CWJAP=\"YOUR WIFI NAME\",\"YOUR WIFI PASWORD\"\r\n");
HAL_Delay(8000);
ei_printf("AT+CIFSR\r\n");
HAL_Delay(8000);
ei_printf("AT+CIPSTART=\"TCP\",\"YOUR LOCAL IP\",PORT\r\n");
HAL_Delay(5000);
ei_printf("AT+CIPMODE=1\r\n");
HAL_Delay(5000);
ei_printf("AT+CIPSEND\r\n");
HAL_Delay(5000);
}
- Install Edge Impulse CLI (https://docs.edgeimpulse.com/docs/cli-installation)
- Install TCP-Com (https://www.taltech.com/tcpcom)
- Open TCP-Com setup this parameters
Open TCP local server
Com port open
- Open node js terminal run Edge impulse data forwarder select com port select project write x, y, z or other
1 / 3 • Select com port
- Data forwarding test for air
Board connected
Sending data for TCP
C/C++Here is an example of connecting an ADXL345 accelerometer and sending data via esp 01
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* <h2><center>© Copyright (c) 2021 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <stdio.h>
#include <string.h>
#include <stdarg.h>
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
SPI_HandleTypeDef hspi1;
UART_HandleTypeDef huart1;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_SPI1_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
void vprint(const char *fmt, va_list argp)
{
char string[200];
if (0 < vsprintf(string, fmt, argp)) // build string
{
HAL_UART_Transmit(&huart1, (uint8_t*) string, strlen(string), 0xffffff);
}
}
void ei_printf(const char *format, ...)
{
va_list myargs;
va_start(myargs, format);
vprint(format, myargs);
va_end(myargs);
}
uint8_t spibuf[10];
int16_t pDataXYZ[3] =
{ 0 };
void spiwrite(uint8_t address, uint8_t value, uint16_t cs)
{
uint8_t data[2];
data[0] = address | 0x40; //Or with 0x40 to do write/read multiple bits
data[1] = value;
HAL_GPIO_WritePin(GPIOA, cs, GPIO_PIN_RESET); // make chip select low to enable transmission
HAL_SPI_Transmit(&hspi1, data, 2, 10); // write data to register
HAL_GPIO_WritePin(GPIOA, cs, GPIO_PIN_SET); // make chip select high at the end of transmission
}
void spiread(uint8_t address, uint16_t cs)
{
address |= 0x80; // //Or with 0x80 for read operations
address |= 0x40;
HAL_GPIO_WritePin(GPIOA, cs, GPIO_PIN_RESET);
HAL_SPI_Transmit(&hspi1, &address, 1, 1); // send address
HAL_SPI_Receive(&hspi1, &spibuf[0], 6, 1); // read the data from device
HAL_GPIO_WritePin(GPIOA, cs, GPIO_PIN_SET);
}
void adxl0_init()
{
spiwrite(0x2D, 0x00, NSS0_Pin); // Reset before configuring power register
spiwrite(0x2D, 0x08, NSS0_Pin); //Configure the power register, and turn on the device
// spiwrite(0x1E,-8768,GPIO_PIN_4);//x
// spiwrite(0x1F,-8768,GPIO_PIN_4);//y
// spiwrite(0x20,-8768,GPIO_PIN_4);//z colib
// Configuring the data format register
//The 5th bit corresponds to setting interrupt to active low if set
spiwrite(0x31, 0x2e, NSS0_Pin); //Lower nibble:Selecting +/- 4g range and 4 wire spi mode( FULL RESOLUTION+MSB FRIST
//Configuring sampling rate to 100hz
spiwrite(0x2C, 0x0d, NSS0_Pin); //0a
HAL_GPIO_WritePin(GPIOA, NSS0_Pin, GPIO_PIN_SET);
}
void esp8266()
{
ei_printf("AT\r\n");
HAL_Delay(5000);
ei_printf("AT+CWMODE=1\r\n");
HAL_Delay(5000);
ei_printf("AT+CWJAP=\"Hi-Tech Gateway 221\",\"HiTech2020@)@)\"\r\n");
HAL_Delay(8000);
ei_printf("AT+CIFSR\r\n");
HAL_Delay(8000);
ei_printf("AT+CIPSTART=\"TCP\",\"172.20.200.74\",9090\r\n");
HAL_Delay(5000);
ei_printf("AT+CIPMODE=1\r\n");
HAL_Delay(5000);
ei_printf("AT+CIPSEND\r\n");
HAL_Delay(5000);
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_USART1_UART_Init();
MX_SPI1_Init();
/* USER CODE BEGIN 2 */
esp8266();
adxl0_init();
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
spiread(0x32, NSS0_Pin); // Register address corresponding to required data
pDataXYZ[0] = ((spibuf[1] << 8) | spibuf[0]);
pDataXYZ[1] = ((spibuf[3] << 8) | spibuf[2]);
pDataXYZ[2] = ((spibuf[5] << 8) | spibuf[4]);
ei_printf("%f\t%f\t%f\n",static_cast<float>(pDataXYZ[0]) / 100.0f,
static_cast<float>(pDataXYZ[1]) / 100.0f,
static_cast<float>(pDataXYZ[2]) / 100.0f);
HAL_Delay(20);
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK)
{
Error_Handler();
}
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_MSI;
RCC_OscInitStruct.MSIState = RCC_MSI_ON;
RCC_OscInitStruct.MSICalibrationValue = 0;
RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_6;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_MSI;
RCC_OscInitStruct.PLL.PLLM = 1;
RCC_OscInitStruct.PLL.PLLN = 40;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7;
RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief SPI1 Initialization Function
* @param None
* @retval None
*/
static void MX_SPI1_Init(void)
{
/* USER CODE BEGIN SPI1_Init 0 */
/* USER CODE END SPI1_Init 0 */
/* USER CODE BEGIN SPI1_Init 1 */
/* USER CODE END SPI1_Init 1 */
/* SPI1 parameter configuration*/
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER;
hspi1.Init.Direction = SPI_DIRECTION_2LINES;
hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_HIGH;
hspi1.Init.CLKPhase = SPI_PHASE_2EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 7;
hspi1.Init.CRCLength = SPI_CRC_LENGTH_DATASIZE;
hspi1.Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
if (HAL_SPI_Init(&hspi1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN SPI1_Init 2 */
/* USER CODE END SPI1_Init 2 */
}
/**
* @brief USART1 Initialization Function
* @param None
* @retval None
*/
static void MX_USART1_UART_Init(void)
{
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE END USART1_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 115200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART1_Init 2 */
/* USER CODE END USART1_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOA_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(NSS0_GPIO_Port, NSS0_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : NSS0_Pin */
GPIO_InitStruct.Pin = NSS0_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(NSS0_GPIO_Port, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
5 projects • 12 followers
Co-founder and Embedded software/machine learning engineer at Tiny and Microelectronics engineer in Hi-Tech Gateway. 5+ years of experience.
Comments
Please log in or sign up to comment.