Hackster is hosting Hackster Holidays, Ep. 7: Livestream & Giveaway Drawing. Watch previous episodes or stream live on Friday!Stream Hackster Holidays, Ep. 7 on Friday!
KarthickSindhuM. Ramanadha
Created November 2, 2017 © GPL3+

Balloonsonde for City Environment Monitoring

In cities there will be more pollution causes surface warming by measuring environmental conditions we can make city safe.

BeginnerFull instructions provided1 hour153

Things used in this project

Hardware components

STM32 SensorTile
×1

Software apps and online services

STM32 ST BlueM

Hand tools and fabrication machines

Kite Thread
Balloons
Hydrogen gas
Color cello Tape
Scissors

Story

Read more

Custom parts and enclosures

SensorTile+Cradle

Cradle and SensorTile CAD file.

SensorTile protective box top

To protect SensorTile from water and dust cover case is designed using CAD file.

SensorTile protective box bottom

Protective case bottom CAD file for 3D printing.

Schematics

Schematic file

Schematic diagram used in the SensorTile design.

Code

Program Code to SensorTile

C/C++
To make use of sensor tile we can program as our wish here is a program to due to.
/* Program for SensorTile*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "cmsis_os.h"
#include "datalog_application.h"
    
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
    
#define DATAQUEUE_SIZE     ((uint32_t)100)
                                                              
typedef enum
{
  THREAD_1 = 0,
  THREAD_2
} Thread_TypeDef;
  
/* Private variables ---------------------------------------------------------*/

osThreadId GetDataThreadId, WriteDataThreadId;

osMessageQId dataQueue_id;
osMessageQDef(dataqueue, DATAQUEUE_SIZE, int);

osPoolId sensorPool_id;
osPoolDef(sensorPool, DATAQUEUE_SIZE, T_SensorsData);

osSemaphoreId readDataSem_id;
osSemaphoreDef(readDataSem);

osSemaphoreId doubleTapSem_id;
osSemaphoreDef(doubleTapSem);

/* LoggingInterface = USB_Datalog  --> Save sensors data on SDCard (enable with double click) */
/* LoggingInterface = SDCARD_Datalog  --> Send sensors data via USB */
LogInterface_TypeDef LoggingInterface = USB_Datalog;

USBD_HandleTypeDef  USBD_Device;
static volatile uint8_t MEMSInterrupt = 0;
volatile uint8_t no_H_HTS221 = 0;
volatile uint8_t no_T_HTS221 = 0;

void *LSM6DSM_X_0_handle = NULL;
void *LSM6DSM_G_0_handle = NULL;
void *LSM303AGR_X_0_handle = NULL;
void *LSM303AGR_M_0_handle = NULL;
void *LPS22HB_P_0_handle = NULL;
void *LPS22HB_T_0_handle = NULL; 
void *HTS221_H_0_handle = NULL; 
void *HTS221_T_0_handle = NULL;

/* Private function prototypes -----------------------------------------------*/
static void GetData_Thread(void const *argument);
static void WriteData_Thread(void const *argument);

static void Error_Handler( void );
static void initializeAllSensors( void );
void enableAllSensors( void );
void disableAllSensors( void );
void setOdrAllSensors( void );

void dataTimer_Callback(void const *arg);
void dataTimerStart(void);
void dataTimerStop(void);

osTimerId sensorTimId;
osTimerDef(SensorTimer, dataTimer_Callback);

uint32_t  exec;
/* Private functions ---------------------------------------------------------*/

/**
  * @brief  Main program
  * @param  None
  * @retval None
  */
int main(void)
{
  HAL_Init();

  /* Configure the System clock to 80 MHz */
  SystemClock_Config();

  if(LoggingInterface == USB_Datalog)
  {
    /* Initialize LED */
    BSP_LED_Init(LED1);
    BSP_LED_Off(LED1);
  }
 
  /* enable USB power on Pwrctrl CR2 register */
  HAL_PWREx_EnableVddUSB();
  
  if(LoggingInterface == USB_Datalog) /* Configure the USB */
  {
    /*** USB CDC Configuration ***/
    /* Init Device Library */
    USBD_Init(&USBD_Device, &VCP_Desc, 0);
    /* Add Supported Class */
    USBD_RegisterClass(&USBD_Device, USBD_CDC_CLASS);
    /* Add Interface callbacks for AUDIO and CDC Class */
    USBD_CDC_RegisterInterface(&USBD_Device, &USBD_CDC_fops);
    /* Start Device Process */
    USBD_Start(&USBD_Device);
  }
  else /* Configure the SDCard */
  {
    DATALOG_SD_Init();
  }

  /* Thread 1 definition */
  osThreadDef(THREAD_1, GetData_Thread, osPriorityAboveNormal, 0, configMINIMAL_STACK_SIZE*4);
  
  /* Thread 2 definition */
  osThreadDef(THREAD_2, WriteData_Thread, osPriorityNormal, 0, configMINIMAL_STACK_SIZE*4);
  
  /* Start thread 1 */
  GetDataThreadId = osThreadCreate(osThread(THREAD_1), NULL);

  /* Start thread 2 */
  WriteDataThreadId = osThreadCreate(osThread(THREAD_2), NULL);  
  
  /* Start scheduler */
  osKernelStart();

  /* We should never get here as control is now taken by the scheduler */
  for (;;);

}

/**
  * @brief  Get data raw from sensors to queue
  * @param  thread not used
  * @retval None
  */
static void GetData_Thread(void const *argument)
{
  (void) argument;
  uint8_t doubleTap = 0;
  T_SensorsData *mptr;
  
  sensorPool_id = osPoolCreate(osPool(sensorPool));     
  dataQueue_id = osMessageCreate(osMessageQ(dataqueue), NULL);
  
  readDataSem_id = osSemaphoreCreate(osSemaphore(readDataSem), 1);
  osSemaphoreWait(readDataSem_id, osWaitForever);
  
  doubleTapSem_id = osSemaphoreCreate(osSemaphore(doubleTapSem), 1);
  osSemaphoreWait(doubleTapSem_id, osWaitForever);
  
  /* Configure and disable all the Chip Select pins */
  Sensor_IO_SPI_CS_Init_All();
  
  /* Initialize and Enable the available sensors */
  initializeAllSensors();
  enableAllSensors();
  
  if(LoggingInterface == USB_Datalog)
  {
    dataTimerStart();
  }
  
  for (;;)
  {
    osSemaphoreWait(readDataSem_id, osWaitForever);
    if(MEMSInterrupt && LoggingInterface == SDCARD_Datalog)
    {
      MEMSInterrupt = 0;
      BSP_ACCELERO_Get_Double_Tap_Detection_Status_Ext(LSM6DSM_X_0_handle, &doubleTap);
      if(doubleTap)
      {
        if(SD_Log_Enabled) 
        {
          dataTimerStop();
          osMessagePut(dataQueue_id, 0x00000007, osWaitForever);
        }
        else
        {
          osMessagePut(dataQueue_id, 0x00000007, osWaitForever);
        }
      }
    }
    else
    {
      /* Try to allocate a memory block and check if is not NULL */
      mptr = osPoolAlloc(sensorPool_id);
      if(mptr != NULL)
      {
        /* Get Data from Sensors */
        if(getSensorsData(mptr) == COMPONENT_OK)
        {
          /* Push the new memory Block in the Data Queue */
          if(osMessagePut(dataQueue_id, (uint32_t)mptr, osWaitForever) != osOK)
          {
             Error_Handler();
          }
        }
        else
        {
          Error_Handler();
        }
      }
      else
      {
        Error_Handler();
      }
    }
  }
}


/**
  * @brief  Write data in the queue on file or streaming via USB
  * @param  argument not used
  * @retval None
  */
static void WriteData_Thread(void const *argument)
{
  (void) argument;
  osEvent evt;
  T_SensorsData *rptr;
  int size;
  char data_s[256];
  
  for (;;)
  {
    evt = osMessageGet(dataQueue_id, osWaitForever);  // wait for message
    if (evt.status == osEventMessage)
    {
      if(evt.value.v == 0x00000007)
      {
        if (SD_Log_Enabled) 
        {
          DATALOG_SD_Log_Disable();
          SD_Log_Enabled=0;
        }
        else
        {
          while(SD_Log_Enabled != 1)
          {
            if(DATALOG_SD_Log_Enable())
            {
              SD_Log_Enabled=1;
              osDelay(100);
              dataTimerStart();
            }
            else
            {
              //DATALOG_SD_Log_Disable();
              DATALOG_SD_DeInit();
              DATALOG_SD_Init();
              osDelay(100);
            }
          }
        }
      }
      else
      {
        rptr = evt.value.p;

        if(LoggingInterface == USB_Datalog)
        {
          size = sprintf(data_s, "TimeStamp: %d\r\n Acc_X: %d, Acc_Y: %d, Acc_Z :%d\r\n Gyro_X:%d, Gyro_Y:%d, Gyro_Z:%d\r\n Magn_X:%d, Magn_Y:%d, Magn_Z:%d\r\n Press:%5.2f, Temp:%5.2f, Hum:%4.1f\r\n",
                       rptr->ms_counter,
                       (int)rptr->acc.AXIS_X, (int)rptr->acc.AXIS_Y, (int)rptr->acc.AXIS_Z,
                       (int)rptr->gyro.AXIS_X, (int)rptr->gyro.AXIS_Y, (int)rptr->gyro.AXIS_Z,
                       (int)rptr->mag.AXIS_X, (int)rptr->mag.AXIS_Y, (int)rptr->mag.AXIS_Z,
                       rptr->pressure, rptr->temperature, rptr->humidity);
          osPoolFree(sensorPool_id, rptr);      // free memory allocated for message
          BSP_LED_Toggle(LED1);
          CDC_Fill_Buffer(( uint8_t * )data_s, size);
        }
        else
        {
          size = sprintf(data_s, "%d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %5.2f, %5.2f, %4.1f\r\n",
                       rptr->ms_counter,
                       (int)rptr->acc.AXIS_X, (int)rptr->acc.AXIS_Y, (int)rptr->acc.AXIS_Z,
                       (int)rptr->gyro.AXIS_X, (int)rptr->gyro.AXIS_Y, (int)rptr->gyro.AXIS_Z,
                       (int)rptr->mag.AXIS_X, (int)rptr->mag.AXIS_Y, (int)rptr->mag.AXIS_Z,
                       rptr->pressure, rptr->temperature, rptr->humidity);
          osPoolFree(sensorPool_id, rptr);      // free memory allocated for message
          DATALOG_SD_writeBuf(data_s, size);
        }
      }
    }
  }
}


void dataTimer_Callback(void const *arg)
{ 
  osSemaphoreRelease(readDataSem_id);
} 


void dataTimerStart(void)
{
  osStatus  status;
 
  // Create periodic timer
  exec = 1;
  sensorTimId = osTimerCreate(osTimer(SensorTimer), osTimerPeriodic, &exec);
  if (sensorTimId)  {
    status = osTimerStart (sensorTimId, DATA_PERIOD_MS);                // start timer
    if (status != osOK)  {
      // Timer could not be started
    } 
  }
}

void dataTimerStop(void)
{
  osTimerStop(sensorTimId);
}




/**
* @brief  Initialize all sensors
* @param  None
* @retval None
*/
static void initializeAllSensors( void )
{
  if (BSP_ACCELERO_Init( LSM6DSM_X_0, &LSM6DSM_X_0_handle ) != COMPONENT_OK)
  {
    while(1);
  }
  
  if (BSP_GYRO_Init( LSM6DSM_G_0, &LSM6DSM_G_0_handle ) != COMPONENT_OK)
  {
    while(1);
  }
  
  if (BSP_ACCELERO_Init( LSM303AGR_X_0, &LSM303AGR_X_0_handle ) != COMPONENT_OK)
  {
    while(1);
  }
  
  if (BSP_MAGNETO_Init( LSM303AGR_M_0, &LSM303AGR_M_0_handle ) != COMPONENT_OK)
  {
    while(1);
  }
  
  if (BSP_PRESSURE_Init( LPS22HB_P_0, &LPS22HB_P_0_handle ) != COMPONENT_OK)
  {
    while(1);
  }
  
  if (BSP_TEMPERATURE_Init( LPS22HB_T_0, &LPS22HB_T_0_handle ) != COMPONENT_OK)
  {
    while(1);
  }
  
  if(BSP_TEMPERATURE_Init( HTS221_T_0, &HTS221_T_0_handle ) == COMPONENT_ERROR)
  {
    no_T_HTS221 = 1;
  }
  
  if(BSP_HUMIDITY_Init( HTS221_H_0, &HTS221_H_0_handle ) == COMPONENT_ERROR)
  {
    no_H_HTS221 = 1;
  }
  
  if(LoggingInterface == SDCARD_Datalog)
  {
    /* Enable HW Double Tap detection */
    BSP_ACCELERO_Enable_Double_Tap_Detection_Ext(LSM6DSM_X_0_handle, INT2_PIN);
    BSP_ACCELERO_Set_Tap_Threshold_Ext(LSM6DSM_X_0_handle, LSM6DSM_TAP_THRESHOLD_MID);
  }
  
}

/**
* @brief  Enable all sensors
* @param  None
* @retval None
*/
void enableAllSensors( void )
{
  BSP_ACCELERO_Sensor_Enable( LSM6DSM_X_0_handle );
  BSP_GYRO_Sensor_Enable( LSM6DSM_G_0_handle );
  BSP_ACCELERO_Sensor_Enable( LSM303AGR_X_0_handle );
  BSP_MAGNETO_Sensor_Enable( LSM303AGR_M_0_handle );
  BSP_PRESSURE_Sensor_Enable( LPS22HB_P_0_handle );
  BSP_TEMPERATURE_Sensor_Enable( LPS22HB_T_0_handle );
  if(!no_T_HTS221)
  {
    BSP_TEMPERATURE_Sensor_Enable( HTS221_T_0_handle );
  }
  if(!no_H_HTS221)
  {
    BSP_HUMIDITY_Sensor_Enable( HTS221_H_0_handle );
  }
}
/**
* @brief  Set ODR all sensors
* @param  None
* @retval None
*/
void setOdrAllSensors( void )
{
  BSP_ACCELERO_Set_ODR_Value( LSM303AGR_X_0_handle, ACCELERO_ODR);
  BSP_MAGNETO_Set_ODR_Value( LSM303AGR_M_0_handle, MAGNETO_ODR);
  BSP_GYRO_Set_ODR_Value(LSM6DSM_G_0_handle, GYRO_ODR);
  BSP_PRESSURE_Set_ODR_Value( LPS22HB_P_0_handle, PRESSURE_ODR);
  BSP_TEMPERATURE_Set_ODR_Value( HTS221_T_0_handle, TEMPERATURE_ODR);
  BSP_HUMIDITY_Set_ODR_Value( HTS221_H_0_handle, TEMPERATURE_ODR );    
}


/**
* @brief  Disable all sensors
* @param  None
* @retval None
*/
void disableAllSensors( void )
{
  BSP_ACCELERO_Sensor_Disable( LSM6DSM_X_0_handle );
  BSP_ACCELERO_Sensor_Disable( LSM303AGR_X_0_handle );
  BSP_GYRO_Sensor_Disable( LSM6DSM_G_0_handle );
  BSP_MAGNETO_Sensor_Disable( LSM303AGR_M_0_handle );
  BSP_HUMIDITY_Sensor_Disable( HTS221_H_0_handle );
  BSP_TEMPERATURE_Sensor_Disable( HTS221_T_0_handle );
  BSP_TEMPERATURE_Sensor_Disable( LPS22HB_T_0_handle );
  BSP_PRESSURE_Sensor_Disable( LPS22HB_P_0_handle );
}

/**
* @brief  EXTI line detection callbacks
* @param  GPIO_Pin: Specifies the pins connected EXTI line
* @retval None
*/
void HAL_GPIO_EXTI_Callback( uint16_t GPIO_Pin )
{
  MEMSInterrupt=1;
  osSemaphoreRelease(readDataSem_id);
}

/**
* @brief  This function is executed in case of error occurrence
* @param  None
* @retval None
*/
static void Error_Handler( void )
{
  while (1)
  {}
}


#ifdef  USE_FULL_ASSERT

/**
  * @brief  Reports the name of the source file and the source line number
  *   where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */

  /* Infinite loop */
  while (1)
  {}
}
#endif

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

Credits

Karthick
12 projects • 13 followers
Hobbyist
Sindhu
3 projects • 5 followers
M. Ramanadha
4 projects • 4 followers
Student

Comments