Heman LiangDaniel Liang
Published © GPL3+

Virtual Entertainment Touring Drone

During this difficult time of the year, many families are struggling to get to places. And that is exactly why we are here for

AdvancedWork in progressOver 4 days902

Things used in this project

Hardware components

NXP Telemetry Radio for HoverGames Drone, 915Mhz (US)
×1
KIT-HGDRONEK66
NXP KIT-HGDRONEK66
×1
NXP NavQ
×1
Raspberry Pi 4 Model B
Raspberry Pi 4 Model B
×1
Raspberry Pi 4 Camera Wide angle lens
×1
Sound Card (Ultra++)
×1
QWinOut 2-4S 30A/40A RC Brushless ESC Simonk Firmware Electric Speed Controller with 5V 3A BEC with 3.5mm Female Banana Bullet for 2 to 4s Lipo Battery, DIY Multicopter Quadcopter (40A, 4 pcs)
×1
RDDRONE-FMUK66
NXP RDDRONE-FMUK66
×1

Software apps and online services

Arduino IDE
Arduino IDE
QGroundControl
PX4 QGroundControl
PX4
PX4

Hand tools and fabrication machines

EDGELEC 120pcs Breadboard Jumper Wires 10cm 15cm 20cm 30cm 40cm 50cm 100cm Wire Length Optional Dupont Cable Assorted Kit Male to Female Male to Male Female to Female Multicolored Ribbon Cables
SZHKM

Story

Read more

Schematics

Drone Diagram

it is a drone drawing, a diagram of the entire drone

Payload Camera Design

a diagram of a camera design

Payload Camera Design 2

Second payload design

Block Diagram

Payload Block Diagram

Code

Attitude Control

C/C++
It is Attitude Control, used to control drone's wing attitude
#include "FixedwingAttitudeControl.hpp"

#include <vtol_att_control/vtol_type.h>

using namespace time_literals;
using math::constrain;
using math::gradual;
using math::radians;

FixedwingAttitudeControl::FixedwingAttitudeControl(bool vtol) :
	ModuleParams(nullptr),
	WorkItem(MODULE_NAME, px4::wq_configurations::nav_and_controllers),
	_actuators_0_pub(vtol ? ORB_ID(actuator_controls_virtual_fw) : ORB_ID(actuator_controls_0)),
	_attitude_sp_pub(vtol ? ORB_ID(fw_virtual_attitude_setpoint) : ORB_ID(vehicle_attitude_setpoint)),
	_loop_perf(perf_alloc(PC_ELAPSED, MODULE_NAME": cycle"))
{
	// check if VTOL first
	if (vtol) {
		int32_t vt_type = -1;

		if (param_get(param_find("VT_TYPE"), &vt_type) == PX4_OK) {
			_is_tailsitter = (static_cast<vtol_type>(vt_type) == vtol_type::TAILSITTER);
		}
	}

	/* fetch initial parameter values */
	parameters_update();

	// set initial maximum body rate setpoints
	_roll_ctrl.set_max_rate(radians(_param_fw_acro_x_max.get()));
	_pitch_ctrl.set_max_rate_pos(radians(_param_fw_acro_y_max.get()));
	_pitch_ctrl.set_max_rate_neg(radians(_param_fw_acro_y_max.get()));
	_yaw_ctrl.set_max_rate(radians(_param_fw_acro_z_max.get()));
}

FixedwingAttitudeControl::~FixedwingAttitudeControl()
{
	perf_free(_loop_perf);
}

bool
FixedwingAttitudeControl::init()
{
	if (!_att_sub.registerCallback()) {
		PX4_ERR("vehicle attitude callback registration failed!");
		return false;
	}

	return true;
}

int
FixedwingAttitudeControl::parameters_update()
{
	/* pitch control parameters */
	_pitch_ctrl.set_time_constant(_param_fw_p_tc.get());
	_pitch_ctrl.set_k_p(_param_fw_pr_p.get());
	_pitch_ctrl.set_k_i(_param_fw_pr_i.get());
	_pitch_ctrl.set_k_ff(_param_fw_pr_ff.get());
	_pitch_ctrl.set_integrator_max(_param_fw_pr_imax.get());

	/* roll control parameters */
	_roll_ctrl.set_time_constant(_param_fw_r_tc.get());
	_roll_ctrl.set_k_p(_param_fw_rr_p.get());
	_roll_ctrl.set_k_i(_param_fw_rr_i.get());
	_roll_ctrl.set_k_ff(_param_fw_rr_ff.get());
	_roll_ctrl.set_integrator_max(_param_fw_rr_imax.get());

	/* yaw control parameters */
	_yaw_ctrl.set_k_p(_param_fw_yr_p.get());
	_yaw_ctrl.set_k_i(_param_fw_yr_i.get());
	_yaw_ctrl.set_k_ff(_param_fw_yr_ff.get());
	_yaw_ctrl.set_integrator_max(_param_fw_yr_imax.get());

	/* wheel control parameters */
	_wheel_ctrl.set_k_p(_param_fw_wr_p.get());
	_wheel_ctrl.set_k_i(_param_fw_wr_i.get());
	_wheel_ctrl.set_k_ff(_param_fw_wr_ff.get());
	_wheel_ctrl.set_integrator_max(_param_fw_wr_imax.get());
	_wheel_ctrl.set_max_rate(radians(_param_fw_w_rmax.get()));

	return PX4_OK;
}

void
FixedwingAttitudeControl::vehicle_control_mode_poll()
{
	_vcontrol_mode_sub.update(&_vcontrol_mode);

	if (_vehicle_status.is_vtol) {
		const bool is_hovering = _vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING
					 && !_vehicle_status.in_transition_mode;
		const bool is_tailsitter_transition = _vehicle_status.in_transition_mode && _is_tailsitter;

		if (is_hovering || is_tailsitter_transition) {
			_vcontrol_mode.flag_control_attitude_enabled = false;
			_vcontrol_mode.flag_control_manual_enabled = false;
		}
	}
}

void
FixedwingAttitudeControl::vehicle_manual_poll()
{
	const bool is_tailsitter_transition = _is_tailsitter && _vehicle_status.in_transition_mode;
	const bool is_fixed_wing = _vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_FIXED_WING;

	if (_vcontrol_mode.flag_control_manual_enabled && (!is_tailsitter_transition || is_fixed_wing)) {

		// Always copy the new manual setpoint, even if it wasn't updated, to fill the _actuators with valid values
		if (_manual_control_setpoint_sub.copy(&_manual_control_setpoint)) {

			// Check if we are in rattitude mode and the pilot is above the threshold on pitch
			if (_vcontrol_mode.flag_control_rattitude_enabled) {
				if (fabsf(_manual_control_setpoint.y) > _param_fw_ratt_th.get()
				    || fabsf(_manual_control_setpoint.x) > _param_fw_ratt_th.get()) {
					_vcontrol_mode.flag_control_attitude_enabled = false;
				}
			}

			if (!_vcontrol_mode.flag_control_climb_rate_enabled &&
			    !_vcontrol_mode.flag_control_offboard_enabled) {

				if (_vcontrol_mode.flag_control_attitude_enabled) {
					// STABILIZED mode generate the attitude setpoint from manual user inputs

					_att_sp.roll_body = _manual_control_setpoint.y * radians(_param_fw_man_r_max.get());

					_att_sp.pitch_body = -_manual_control_setpoint.x * radians(_param_fw_man_p_max.get())
							     + radians(_param_fw_psp_off.get());
					_att_sp.pitch_body = constrain(_att_sp.pitch_body,
								       -radians(_param_fw_man_p_max.get()), radians(_param_fw_man_p_max.get()));

					_att_sp.yaw_body = 0.0f;
					_att_sp.thrust_body[0] = _manual_control_setpoint.z;

					Quatf q(Eulerf(_att_sp.roll_body, _att_sp.pitch_body, _att_sp.yaw_body));
					q.copyTo(_att_sp.q_d);

					_att_sp.timestamp = hrt_absolute_time();

					_attitude_sp_pub.publish(_att_sp);

				} else if (_vcontrol_mode.flag_control_rates_enabled &&
					   !_vcontrol_mode.flag_control_attitude_enabled) {

					// RATE mode we need to generate the rate setpoint from manual user inputs
					_rates_sp.timestamp = hrt_absolute_time();
					_rates_sp.roll = _manual_control_setpoint.y * radians(_param_fw_acro_x_max.get());
					_rates_sp.pitch = -_manual_control_setpoint.x * radians(_param_fw_acro_y_max.get());
					_rates_sp.yaw = _manual_control_setpoint.r * radians(_param_fw_acro_z_max.get());
					_rates_sp.thrust_body[0] = _manual_control_setpoint.z;

					_rate_sp_pub.publish(_rates_sp);

				} else {
					/* manual/direct control */
					_actuators.control[actuator_controls_s::INDEX_ROLL] =
						_manual_control_setpoint.y * _param_fw_man_r_sc.get() + _param_trim_roll.get();
					_actuators.control[actuator_controls_s::INDEX_PITCH] =
						-_manual_control_setpoint.x * _param_fw_man_p_sc.get() + _param_trim_pitch.get();
					_actuators.control[actuator_controls_s::INDEX_YAW] =
						_manual_control_setpoint.r * _param_fw_man_y_sc.get() + _param_trim_yaw.get();
					_actuators.control[actuator_controls_s::INDEX_THROTTLE] = _manual_control_setpoint.z;
				}
			}
		}
	}
}

void
FixedwingAttitudeControl::vehicle_attitude_setpoint_poll()
{
	if (_att_sp_sub.update(&_att_sp)) {
		_rates_sp.thrust_body[0] = _att_sp.thrust_body[0];
		_rates_sp.thrust_body[1] = _att_sp.thrust_body[1];
		_rates_sp.thrust_body[2] = _att_sp.thrust_body[2];
	}
}

void
FixedwingAttitudeControl::vehicle_rates_setpoint_poll()
{
	if (_rates_sp_sub.update(&_rates_sp)) {
		if (_is_tailsitter) {
			float tmp = _rates_sp.roll;
			_rates_sp.roll = -_rates_sp.yaw;
			_rates_sp.yaw = tmp;
		}
	}
}

void
FixedwingAttitudeControl::vehicle_land_detected_poll()
{
	if (_vehicle_land_detected_sub.updated()) {
		vehicle_land_detected_s vehicle_land_detected {};

		if (_vehicle_land_detected_sub.copy(&vehicle_land_detected)) {
			_landed = vehicle_land_detected.landed;
		}
	}
}

float FixedwingAttitudeControl::get_airspeed_and_update_scaling()
{
	_airspeed_validated_sub.update();
	const bool airspeed_valid = PX4_ISFINITE(_airspeed_validated_sub.get().calibrated_airspeed_m_s)
				    && (hrt_elapsed_time(&_airspeed_validated_sub.get().timestamp) < 1_s);

	// if no airspeed measurement is available out best guess is to use the trim airspeed
	float airspeed = _param_fw_airspd_trim.get();

	if ((_param_fw_arsp_mode.get() == 0) && airspeed_valid) {
		/* prevent numerical drama by requiring 0.5 m/s minimal speed */
		airspeed = math::max(0.5f, _airspeed_validated_sub.get().calibrated_airspeed_m_s);

	} else {
		// VTOL: if we have no airspeed available and we are in hover mode then assume the lowest airspeed possible
		// this assumption is good as long as the vehicle is not hovering in a headwind which is much larger
		// than the minimum airspeed
		if (_vehicle_status.is_vtol && _vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING
		    && !_vehicle_status.in_transition_mode) {
			airspeed = _param_fw_airspd_min.get();
		}
	}

	/*
	 * For scaling our actuators using anything less than the min (close to stall)
	 * speed doesn't make any sense - its the strongest reasonable deflection we
	 * want to do in flight and its the baseline a human pilot would choose.
	 *
	 * Forcing the scaling to this value allows reasonable handheld tests.
	 */
	const float airspeed_constrained = constrain(airspeed, _param_fw_airspd_min.get(), _param_fw_airspd_max.get());

	_airspeed_scaling = (_param_fw_arsp_scale_en.get()) ? (_param_fw_airspd_trim.get() / airspeed_constrained) : 1.0f;

	return airspeed;
}

void FixedwingAttitudeControl::Run()
{
	if (should_exit()) {
		_att_sub.unregisterCallback();
		exit_and_cleanup();
		return;
	}

	perf_begin(_loop_perf);

	// only run controller if attitude changed
	vehicle_attitude_s att;

	if (_att_sub.update(&att)) {

		// only update parameters if they changed
		bool params_updated = _parameter_update_sub.updated();

		// check for parameter updates
		if (params_updated) {
			// clear update
			parameter_update_s pupdate;
			_parameter_update_sub.copy(&pupdate);

			// update parameters from storage
			updateParams();
			parameters_update();
		}

		const float dt = math::constrain((att.timestamp - _last_run) * 1e-6f, 0.002f, 0.04f);
		_last_run = att.timestamp;

		/* get current rotation matrix and euler angles from control state quaternions */
		matrix::Dcmf R = matrix::Quatf(att.q);

		vehicle_angular_velocity_s angular_velocity{};
		_vehicle_rates_sub.copy(&angular_velocity);
		float rollspeed = angular_velocity.xyz[0];
		float pitchspeed = angular_velocity.xyz[1];
		float yawspeed = angular_velocity.xyz[2];

		if (_is_tailsitter) {
			/* vehicle is a tailsitter, we need to modify the estimated attitude for fw mode
			 *
			 * Since the VTOL airframe is initialized as a multicopter we need to
			 * modify the estimated attitude for the fixed wing operation.
			 * Since the neutral position of the vehicle in fixed wing mode is -90 degrees rotated around
			 * the pitch axis compared to the neutral position of the vehicle in multicopter mode
			 * we need to swap the roll and the yaw axis (1st and 3rd column) in the rotation matrix.
			 * Additionally, in order to get the correct sign of the pitch, we need to multiply
			 * the new x axis of the rotation matrix with -1
			 *
			 * original:			modified:
			 *
			 * Rxx  Ryx  Rzx		-Rzx  Ryx  Rxx
			 * Rxy	Ryy  Rzy		-Rzy  Ryy  Rxy
			 * Rxz	Ryz  Rzz		-Rzz  Ryz  Rxz
			 * */
			matrix::Dcmf R_adapted = R;		//modified rotation matrix

			/* move z to x */
			R_adapted(0, 0) = R(0, 2);
			R_adapted(1, 0) = R(1, 2);
			R_adapted(2, 0) = R(2, 2);

			/* move x to z */
			R_adapted(0, 2) = R(0, 0);
			R_adapted(1, 2) = R(1, 0);
			R_adapted(2, 2) = R(2, 0);

			/* change direction of pitch (convert to right handed system) */
			R_adapted(0, 0) = -R_adapted(0, 0);
			R_adapted(1, 0) = -R_adapted(1, 0);
			R_adapted(2, 0) = -R_adapted(2, 0);

			/* fill in new attitude data */
			R = R_adapted;

			/* lastly, roll- and yawspeed have to be swaped */
			float helper = rollspeed;
			rollspeed = -yawspeed;
			yawspeed = helper;
		}

		const matrix::Eulerf euler_angles(R);

		vehicle_attitude_setpoint_poll();

		// vehicle status update must be before the vehicle_control_mode_poll(), otherwise rate sp are not published during whole transition
		_vehicle_status_sub.update(&_vehicle_status);

		vehicle_control_mode_poll();
		vehicle_manual_poll();
		vehicle_land_detected_poll();

		// the position controller will not emit attitude setpoints in some modes
		// we need to make sure that this flag is reset
		_att_sp.fw_control_yaw = _att_sp.fw_control_yaw && _vcontrol_mode.flag_control_auto_enabled;

		bool wheel_control = false;

		// TODO: manual wheel_control on ground?
		if (_param_fw_w_en.get() && _att_sp.fw_control_yaw) {
			wheel_control = true;
		}

		// lock integrator if no rate control enabled, or in RW mode (but not transitioning VTOL or tailsitter), or for long intervals (> 20 ms)
		bool lock_integrator = !_vcontrol_mode.flag_control_rates_enabled
				       || (_vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING &&
					   !_vehicle_status.in_transition_mode && !_is_tailsitter)
				       || (dt > 0.02f);

		/* if we are in rotary wing mode, do nothing */
		if (_vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING && !_vehicle_status.is_vtol) {
			perf_end(_loop_perf);
			return;
		}

		control_flaps(dt);

		/* decide if in stabilized or full manual control */
		if (_vcontrol_mode.flag_control_rates_enabled) {

			const float airspeed = get_airspeed_and_update_scaling();

			/* reset integrals where needed */
			if (_att_sp.roll_reset_integral) {
				_roll_ctrl.reset_integrator();
			}

			if (_att_sp.pitch_reset_integral) {
				_pitch_ctrl.reset_integrator();
			}

			if (_att_sp.yaw_reset_integral) {
				_yaw_ctrl.reset_integrator();
				_wheel_ctrl.reset_integrator();
			}

			/* Reset integrators if the aircraft is on ground
			 * or a multicopter (but not transitioning VTOL or tailsitter)
			 */
			if (_landed
			    || (_vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING
				&& !_vehicle_status.in_transition_mode && !_is_tailsitter)) {

				_roll_ctrl.reset_integrator();
				_pitch_ctrl.reset_integrator();
				_yaw_ctrl.reset_integrator();
				_wheel_ctrl.reset_integrator();
			}

			/* Prepare data for attitude controllers */
			ECL_ControlData control_input{};
			control_input.roll = euler_angles.phi();
			control_input.pitch = euler_angles.theta();
			control_input.yaw = euler_angles.psi();
			control_input.body_x_rate = rollspeed;
			control_input.body_y_rate = pitchspeed;
			control_input.body_z_rate = yawspeed;
			control_input.roll_setpoint = _att_sp.roll_body;
			control_input.pitch_setpoint = _att_sp.pitch_body;
			control_input.yaw_setpoint = _att_sp.yaw_body;
			control_input.airspeed_min = _param_fw_airspd_min.get();
			control_input.airspeed_max = _param_fw_airspd_max.get();
			control_input.airspeed = airspeed;
			control_input.scaler = _airspeed_scaling;
			control_input.lock_integrator = lock_integrator;

			if (wheel_control) {
				_local_pos_sub.update(&_local_pos);

				/* Use min airspeed to calculate ground speed scaling region.
				* Don't scale below gspd_scaling_trim
				*/
				float groundspeed = sqrtf(_local_pos.vx * _local_pos.vx + _local_pos.vy * _local_pos.vy);
				float gspd_scaling_trim = (_param_fw_airspd_min.get() * 0.6f);
				float groundspeed_scaler = gspd_scaling_trim / ((groundspeed < gspd_scaling_trim) ? gspd_scaling_trim : groundspeed);

				control_input.groundspeed = groundspeed;
				control_input.groundspeed_scaler = groundspeed_scaler;
			}

			/* reset body angular rate limits on mode change */
			if ((_vcontrol_mode.flag_control_attitude_enabled != _flag_control_attitude_enabled_last) || params_updated) {
				if (_vcontrol_mode.flag_control_attitude_enabled
				    || _vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING) {
					_roll_ctrl.set_max_rate(radians(_param_fw_r_rmax.get()));
					_pitch_ctrl.set_max_rate_pos(radians(_param_fw_p_rmax_pos.get()));
					_pitch_ctrl.set_max_rate_neg(radians(_param_fw_p_rmax_neg.get()));
					_yaw_ctrl.set_max_rate(radians(_param_fw_y_rmax.get()));

				} else {
					_roll_ctrl.set_max_rate(radians(_param_fw_acro_x_max.get()));
					_pitch_ctrl.set_max_rate_pos(radians(_param_fw_acro_y_max.get()));
					_pitch_ctrl.set_max_rate_neg(radians(_param_fw_acro_y_max.get()));
					_yaw_ctrl.set_max_rate(radians(_param_fw_acro_z_max.get()));
				}
			}

			_flag_control_attitude_enabled_last = _vcontrol_mode.flag_control_attitude_enabled;

			/* bi-linear interpolation over airspeed for actuator trim scheduling */
			float trim_roll = _param_trim_roll.get();
			float trim_pitch = _param_trim_pitch.get();
			float trim_yaw = _param_trim_yaw.get();

			if (airspeed < _param_fw_airspd_trim.get()) {
				trim_roll += gradual(airspeed, _param_fw_airspd_min.get(), _param_fw_airspd_trim.get(), _param_fw_dtrim_r_vmin.get(),
						     0.0f);
				trim_pitch += gradual(airspeed, _param_fw_airspd_min.get(), _param_fw_airspd_trim.get(), _param_fw_dtrim_p_vmin.get(),
						      0.0f);
				trim_yaw += gradual(airspeed, _param_fw_airspd_min.get(), _param_fw_airspd_trim.get(), _param_fw_dtrim_y_vmin.get(),
						    0.0f);

			} else {
				trim_roll += gradual(airspeed, _param_fw_airspd_trim.get(), _param_fw_airspd_max.get(), 0.0f,
						     _param_fw_dtrim_r_vmax.get());
				trim_pitch += gradual(airspeed, _param_fw_airspd_trim.get(), _param_fw_airspd_max.get(), 0.0f,
						      _param_fw_dtrim_p_vmax.get());
				trim_yaw += gradual(airspeed, _param_fw_airspd_trim.get(), _param_fw_airspd_max.get(), 0.0f,
						    _param_fw_dtrim_y_vmax.get());
			}

			/* add trim increment if flaps are deployed  */
			trim_roll += _flaps_applied * _param_fw_dtrim_r_flps.get();
			trim_pitch += _flaps_applied * _param_fw_dtrim_p_flps.get();

			/* Run attitude controllers */
			if (_vcontrol_mode.flag_control_attitude_enabled) {
				if (PX4_ISFINITE(_att_sp.roll_body) && PX4_ISFINITE(_att_sp.pitch_body)) {
					_roll_ctrl.control_attitude(dt, control_input);
					_pitch_ctrl.control_attitude(dt, control_input);

					if (wheel_control) {
						_wheel_ctrl.control_attitude(dt, control_input);
						_yaw_ctrl.reset_integrator();

					} else {
						// runs last, because is depending on output of roll and pitch attitude
						_yaw_ctrl.control_attitude(dt, control_input);
						_wheel_ctrl.reset_integrator();
					}

					/* Update input data for rate controllers */
					control_input.roll_rate_setpoint = _roll_ctrl.get_desired_rate();
					control_input.pitch_rate_setpoint = _pitch_ctrl.get_desired_rate();
					control_input.yaw_rate_setpoint = _yaw_ctrl.get_desired_rate();

					/* Run attitude RATE controllers which need the desired attitudes from above, add trim */
					float roll_u = _roll_ctrl.control_euler_rate(dt, control_input);
					_actuators.control[actuator_controls_s::INDEX_ROLL] = (PX4_ISFINITE(roll_u)) ? roll_u + trim_roll : trim_roll;

					if (!PX4_ISFINITE(roll_u)) {
						_roll_ctrl.reset_integrator();
					}

					float pitch_u = _pitch_ctrl.control_euler_rate(dt, control_input);
					_actuators.control[actuator_controls_s::INDEX_PITCH] = (PX4_ISFINITE(pitch_u)) ? pitch_u + trim_pitch : trim_pitch;

					if (!PX4_ISFINITE(pitch_u)) {
						_pitch_ctrl.reset_integrator();
					}

					float yaw_u = 0.0f;

					if (wheel_control) {
						yaw_u = _wheel_ctrl.control_bodyrate(dt, control_input);

					} else {
						yaw_u = _yaw_ctrl.control_euler_rate(dt, control_input);
					}

					_actuators.control[actuator_controls_s::INDEX_YAW] = (PX4_ISFINITE(yaw_u)) ? yaw_u + trim_yaw : trim_yaw;

					/* add in manual rudder control in manual modes */
					if (_vcontrol_mode.flag_control_manual_enabled) {
						_actuators.control[actuator_controls_s::INDEX_YAW] += _manual_control_setpoint.r;
					}

					if (!PX4_ISFINITE(yaw_u)) {
						_yaw_ctrl.reset_integrator();
						_wheel_ctrl.reset_integrator();
					}

					/* throttle passed through if it is finite and if no engine failure was detected */
					_actuators.control[actuator_controls_s::INDEX_THROTTLE] = (PX4_ISFINITE(_att_sp.thrust_body[0])
							&& !_vehicle_status.engine_failure) ? _att_sp.thrust_body[0] : 0.0f;

					/* scale effort by battery status */
					if (_param_fw_bat_scale_en.get() &&
					    _actuators.control[actuator_controls_s::INDEX_THROTTLE] > 0.1f) {

						if (_battery_status_sub.updated()) {
							battery_status_s battery_status{};

							if (_battery_status_sub.copy(&battery_status)) {
								if (battery_status.scale > 0.0f) {
									_battery_scale = battery_status.scale;
								}
							}
						}

						_actuators.control[actuator_controls_s::INDEX_THROTTLE] *= _battery_scale;
					}
				}

				/*
				 * Lazily publish the rate setpoint (for analysis, the actuators are published below)
				 * only once available
				 */
				_rates_sp.roll = _roll_ctrl.get_desired_bodyrate();
				_rates_sp.pitch = _pitch_ctrl.get_desired_bodyrate();
				_rates_sp.yaw = _yaw_ctrl.get_desired_bodyrate();

				_rates_sp.timestamp = hrt_absolute_time();

				_rate_sp_pub.publish(_rates_sp);

			} else {
				vehicle_rates_setpoint_poll();

				_roll_ctrl.set_bodyrate_setpoint(_rates_sp.roll);
				_yaw_ctrl.set_bodyrate_setpoint(_rates_sp.yaw);
				_pitch_ctrl.set_bodyrate_setpoint(_rates_sp.pitch);

				float roll_u = _roll_ctrl.control_bodyrate(dt, control_input);
				_actuators.control[actuator_controls_s::INDEX_ROLL] = (PX4_ISFINITE(roll_u)) ? roll_u + trim_roll : trim_roll;

				float pitch_u = _pitch_ctrl.control_bodyrate(dt, control_input);
				_actuators.control[actuator_controls_s::INDEX_PITCH] = (PX4_ISFINITE(pitch_u)) ? pitch_u + trim_pitch : trim_pitch;

				float yaw_u = _yaw_ctrl.control_bodyrate(dt, control_input);
				_actuators.control[actuator_controls_s::INDEX_YAW] = (PX4_ISFINITE(yaw_u)) ? yaw_u + trim_yaw : trim_yaw;

				_actuators.control[actuator_controls_s::INDEX_THROTTLE] = PX4_ISFINITE(_rates_sp.thrust_body[0]) ?
						_rates_sp.thrust_body[0] : 0.0f;
			}

			rate_ctrl_status_s rate_ctrl_status{};
			rate_ctrl_status.timestamp = hrt_absolute_time();
			rate_ctrl_status.rollspeed_integ = _roll_ctrl.get_integrator();
			rate_ctrl_status.pitchspeed_integ = _pitch_ctrl.get_integrator();

			if (wheel_control) {
				rate_ctrl_status.additional_integ1 = _wheel_ctrl.get_integrator();

			} else {
				rate_ctrl_status.yawspeed_integ = _yaw_ctrl.get_integrator();
			}

			_rate_ctrl_status_pub.publish(rate_ctrl_status);
		}

		// Add feed-forward from roll control output to yaw control output
		// This can be used to counteract the adverse yaw effect when rolling the plane
		_actuators.control[actuator_controls_s::INDEX_YAW] += _param_fw_rll_to_yaw_ff.get()
				* constrain(_actuators.control[actuator_controls_s::INDEX_ROLL], -1.0f, 1.0f);

		_actuators.control[actuator_controls_s::INDEX_FLAPS] = _flaps_applied;
		_actuators.control[5] = _manual_control_setpoint.aux1;
		_actuators.control[actuator_controls_s::INDEX_AIRBRAKES] = _flaperons_applied;
		// FIXME: this should use _vcontrol_mode.landing_gear_pos in the future
		_actuators.control[7] = _manual_control_setpoint.aux3;

		/* lazily publish the setpoint only once available */
		_actuators.timestamp = hrt_absolute_time();
		_actuators.timestamp_sample = att.timestamp;

		/* Only publish if any of the proper modes are enabled */
		if (_vcontrol_mode.flag_control_rates_enabled ||
		    _vcontrol_mode.flag_control_attitude_enabled ||
		    _vcontrol_mode.flag_control_manual_enabled) {
			_actuators_0_pub.publish(_actuators);
		}
	}

	perf_end(_loop_perf);
}

void FixedwingAttitudeControl::control_flaps(const float dt)
{
	/* default flaps to center */
	float flap_control = 0.0f;

	/* map flaps by default to manual if valid */
	if (PX4_ISFINITE(_manual_control_setpoint.flaps) && _vcontrol_mode.flag_control_manual_enabled
	    && fabsf(_param_fw_flaps_scl.get()) > 0.01f) {
		flap_control = 0.5f * (_manual_control_setpoint.flaps + 1.0f) * _param_fw_flaps_scl.get();

	} else if (_vcontrol_mode.flag_control_auto_enabled
		   && fabsf(_param_fw_flaps_scl.get()) > 0.01f) {

		switch (_att_sp.apply_flaps) {
		case vehicle_attitude_setpoint_s::FLAPS_OFF:
			flap_control = 0.0f; // no flaps
			break;

		case vehicle_attitude_setpoint_s::FLAPS_LAND:
			flap_control = 1.0f * _param_fw_flaps_scl.get() * _param_fw_flaps_lnd_scl.get();
			break;

		case vehicle_attitude_setpoint_s::FLAPS_TAKEOFF:
			flap_control = 1.0f * _param_fw_flaps_scl.get() * _param_fw_flaps_to_scl.get();
			break;
		}
	}

	// move the actual control value continuous with time, full flap travel in 1sec
	if (fabsf(_flaps_applied - flap_control) > 0.01f) {
		_flaps_applied += (_flaps_applied - flap_control) < 0 ? dt : -dt;

	} else {
		_flaps_applied = flap_control;
	}

	/* default flaperon to center */
	float flaperon_control = 0.0f;

	/* map flaperons by default to manual if valid */
	if (PX4_ISFINITE(_manual_control_setpoint.aux2) && _vcontrol_mode.flag_control_manual_enabled
	    && fabsf(_param_fw_flaperon_scl.get()) > 0.01f) {

		flaperon_control = 0.5f * (_manual_control_setpoint.aux2 + 1.0f) * _param_fw_flaperon_scl.get();

	} else if (_vcontrol_mode.flag_control_auto_enabled
		   && fabsf(_param_fw_flaperon_scl.get()) > 0.01f) {

		if (_att_sp.apply_flaps == vehicle_attitude_setpoint_s::FLAPS_LAND) {
			flaperon_control = _param_fw_flaperon_scl.get();

		} else {
			flaperon_control = 0.0f;
		}
	}

	// move the actual control value continuous with time, full flap travel in 1sec
	if (fabsf(_flaperons_applied - flaperon_control) > 0.01f) {
		_flaperons_applied += (_flaperons_applied - flaperon_control) < 0 ? dt : -dt;

	} else {
		_flaperons_applied = flaperon_control;
	}
}

int FixedwingAttitudeControl::task_spawn(int argc, char *argv[])
{
	bool vtol = false;

	if (argc > 1) {
		if (strcmp(argv[1], "vtol") == 0) {
			vtol = true;
		}
	}

	FixedwingAttitudeControl *instance = new FixedwingAttitudeControl(vtol);

	if (instance) {
		_object.store(instance);
		_task_id = task_id_is_work_queue;

		if (instance->init()) {
			return PX4_OK;
		}

	} else {
		PX4_ERR("alloc failed");
	}

	delete instance;
	_object.store(nullptr);
	_task_id = -1;

	return PX4_ERROR;
}

int FixedwingAttitudeControl::custom_command(int argc, char *argv[])
{
	return print_usage("unknown command");
}

int FixedwingAttitudeControl::print_usage(const char *reason)
{
	if (reason) {
		PX4_WARN("%s\n", reason);
	}

	PRINT_MODULE_DESCRIPTION(
		R"DESCR_STR(
### Description
fw_att_control is the fixed wing attitude controller.
)DESCR_STR");

	PRINT_MODULE_USAGE_NAME("fw_att_control", "controller");
	PRINT_MODULE_USAGE_COMMAND("start");
	PRINT_MODULE_USAGE_ARG("vtol", "VTOL mode", true);
	PRINT_MODULE_USAGE_DEFAULT_COMMANDS();

	return 0;
}

extern "C" __EXPORT int fw_att_control_main(int argc, char *argv[])
{
	return FixedwingAttitudeControl::main(argc, argv);
}

Credits

Heman Liang

Heman Liang

1 project • 0 followers
Daniel Liang

Daniel Liang

1 project • 0 followers

Comments